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According to dominant neuropsychological theories of affect, emotions signal salience of
events and in turn facilitate a wide spectrum of response options or action tendencies.
Valence of an emotional experience is pivotal here, as it alters reward and punishment
processing, as well as the balance between safety and risk taking, which can be
translated into changes in the exploration-exploitation trade-off during reinforcement
learning (RL). To test this idea, we compared the behavioral performance of three groups
of participants that all completed a variant of a standard probabilistic learning task, but
who differed regarding which mood state was actually induced and maintained (happy,
sad or neutral). To foster a change from an exploration to an exploitation-based mode,
we removed feedback information once learning was reliably established. Although
changes in mood were successful, learning performance was balanced between the
three groups. Critically, when focusing on exploitation-driven learning only, they did
not differ either. Moreover, mood valence did not alter the learning rate or exploration
per se, when titrated using complementing computational modeling. By comparing
systematically these results to our previous study (Bakic et al., 2014), we found that
arousal levels did differ between studies, which might account for limited modulatory
effects of (positive) mood on RL in the present case. These results challenge the
assumption that mood valence alone is enough to create strong shifts in the way
exploitation or exploration is eventually carried out during (probabilistic) learning. In this
context, we discuss the possibility that both valence and arousal are actually necessary
components of the emotional mood state to yield changes in the use and exploration of
incentives cues during RL.
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INTRODUCTION

Many students would agree that studying for an exam after a heartbreak is a particularly hard
thing to do. On the other hand, some professors would argue that, if one wants to excel, also
the happy, falling in love phase is best avoided altogether. Even if it was possible, would it
really be best if emotions were somehow hushed and kept at bay in order to learn? Or is it
possible that both happiness and sadness can enhance learning? If so, which one works better?
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Emotions are complex, multi-faceted phenomena that signal
importance of events and guide actions to maximize benefits
and minimize damage. From an evolutionary perspective,
development of such variety and richness of emotions as we
know today enabled more flexible, more adaptive functioning,
and ultimately, a wider spectrum of response options (Lang and
Bradley, 2010). In that sense, valence of emotional experiences
plays a pivotal role: positive emotions (such as happiness, joy,
amusement, pleasantness) are hypothesized to signal safety and
instigate creativity, exploration, playfulness, and risk-taking. In
contrast, negatively valenced emotions, such as fear, sadness,
anger, disgust, or frustration, signal threat and the need to recruit
additional resources to deal with potential harm or loss (Isen,
1993; Ashby et al., 1999; Fredrickson, 2004).

From this initial premise, different expectations about
the effects of positive and negative emotions on cognition
and behavior can be derived. Most research on the topic
was performed by inducing mood, using different strategies
(including movie clips, images, music, autobiographical pieces,
guided imagery; see Martin, 1990; Westermann et al., 1996).
Moods are considered to be more enduring and milder than
emotions, and are not directed towards a certain entity, but
are rather ‘‘non-focal’’ (Bolte and Goschke, 2010). Mood effects
have been examined in the area of creative thinking (Isen, 1984;
Isen et al., 1985, 1987), attention (Huntsinger, 2012; Vanlessen
et al., 2014), and cognitive control (van Steenbergen et al., 2010;
Fröber and Dreisbach, 2014). Effects of mood on performance
are rather mixed though, with some studies showing that positive
mood does not necessarily translate into improved (behavioral)
performance (van Steenbergen et al., 2010; Braem et al., 2012;
Zwosta et al., 2013), or that negative mood automatically leads to
detrimental effects for cognition and behavior (for example, see
Cavanagh et al., 2011). Hence, the prevailing notion that positive
emotions are unequivocally beneficial for functioning, while
negative ones are necessarily detrimental has been challenged
recently. For example, recent studies showed that positive affect
can actually lower proactive control (Dreisbach, 2006; Vanlessen
et al., 2015), which, depending on the task at hand, can be
either detrimental or beneficial. Moreover, positive affect can
foster the dominant cognitive style, while negative affect can
counteract it, an observation that speaks against the idea that
positive valence is unconditionally related to a broad focus
and enhanced flexibility, while negative valence is related to a
narrow focus and enhanced rigidity (Hunsinger et al., 2012). In
this context, positive mood does not simply correspond to the
mere opposite of negative mood along a valence dimension or
continuum.

As a matter of fact, reinforcement learning (RL) is a
particularly good candidate as a process to be modulated by
mood, because by definition, it relies directly on the processing of
positive vs. negative information or incentives to achieve a goal at
hand. Stimulus-response associations (S-R) are being formed in
a trial-and-error fashion, based on externally provided feedback,
reward or punishment, about one’s own actions (Sutton and
Barto, 1998). If current mood provides an emotional context
for the learning situation, then it could change the salience
of error and reward, or how threatening and appetitive they

are eventually perceived, and in turn processed. A performance
monitoring system in charge of learning will value opportunities
and threats in surroundings differently depending on the current
state and the needs of the organism. Most theories of RL argue
that performance optimization is based on the right amount
of exploitation of rewarding options, and exploration of less
known, but potentially even more beneficial alternatives (Aston-
Jones and Cohen, 2005; Behrens et al., 2007; Cohen et al.,
2007; Jepma and Nieuwenhuis, 2011). These two concurrent
processes, exploration and exploitation, have complementary
benefits or functions: while it is important to keep current
goals in mind and not allow for distractions (i.e., favor
exploitation), it is at the same time important to keep the
environment in check for potential changes that might reliably
influence performance (i.e., foster exploration). We hypothesize
that this trade-off between exploration and exploitation might
be susceptible to changes in the current mood state of the
participant. If positive mood leads to more exploration of less
known options, while sad mood is accompanied by a more
stringent focus (Bolte and Goschke, 2010), oriented towards
negative information, then this effect should be visible in the
exploration-exploitation trade-off during RL. Moreover, we can
expect that mood manipulation will also influence the usage
of positive and negative feedback for response updating, such
that happy participants could update more based on positive
(than negative) feedback, while sad subjects could avoid negative
feedback.

Along these lines, Unger et al. (2012) have shown that,
in a learning paradigm, inducing a feeling of performance-
related failure changes the strategy towards more error-
driven behavioral control, while it concurrently increases early
electrophysiological markers of error monitoring (at the level
of the error related negativity, ERN). In a previous study,
using a probabilistic learning paradigm, we also showed
that happy mood increased the ERN when learning was
deterministic, and was associated with an augmented learning
rate (but not exploration, see Bakic et al., 2014). More
specifically, we used a probabilistic learning task (Eppinger
et al., 2008) in which the different S-R associations that
had to be learned across multiple and successive encounters
had actually different reward probabilities, unknown to the
participants. This situation usually creates a certain amount
of uncertainty that learning agents have to overcome in
order to optimize their learning performance. Presumably, this
uncertainty might be dealt with differently depending on the
current emotional state of the participant. Even though in
this study we demonstrated that, by modulating the current
mood of the participant, we were able to modulate the learning
rate (accompanied by change on the electrophysiological
level as well, more precisely for the ERN component; see
Bakic et al., 2014), we failed however to show that positive
mood led to clear benefits or impairments in the actual
learning performance during this probabilistic task (i.e., happy
participants did not perform better or worse than neutral
participants during RL).

Accordingly, in the present study, we sought to adapt this
experimental paradigm (see Bakic et al., 2014) in a way that
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would allow us to maximize the chance to capture such a
difference at the behavioral level between the two groups.
For this purpose, in addition to a standard initial learning
phase (consisting of trials made each time of S-R-feedback
associations) that is identical as in previous research (Eppinger
et al., 2008; Bakic et al., 2014), we added a second phase,
where feedback on task performance was omitted. In other
words, during this second phase (when learning was already
established), we changed the trial structure in such a way that
a S-R-feedback sequence was changed to S-R one, preventing
participants from using feedback information (and thereby
exploration) to guide learning. At this point, participants could
only use stored value estimates, and were no longer able to
track state transitions of value. Based on the results obtained
in our previous study, we already knew that S-R associations
were already formed during the first phase before they moved
to the second one. More specifically, internalization of task
rules took place and externally provided feedback was no longer
necessary to perform the task accurately. This is consistent with
the assumption that exploration of different response alternatives
was no longer needed, and the (direct) exploitation of the
acquired knowledge could be carried out. Using this specific
manipulation, we wanted to examine whether creating such
clear-cut difference between the exploration and exploitation
stage of the task could eventually lead to a clearer difference at
the behavioral level between the two groups than in our previous
study (Bakic et al., 2014). Additionally, other than comparing
only happy and neutral mood, in the current study, we added
a third group of participants who received a similar mood
induction procedure (MIP) but with a sad content. This way, we
could assess whether sadness might perhaps produce different
effects on RL compared to happiness, thereby confirming that
mood valence plays a critical role in triggering specific changes
during RL.

To summarize, the goal of this study was to test the effects
of inducing happy, neutral or sad mood on RL (operationalized
using a probabilistic learning task; see Bakic et al., 2014),
when this process was broken down into two consecutive
phases: an initial learning phase relying on the use of external
feedback information to guide learning (where both exploration
and exploitation are used in synergy), followed by a second
phase where feedback was omitted (and exploitation alone is
encouraged). Our experimental design involved comparisons
of three groups of participants differing from one another
regarding the actual mood state induced (happy, neutral, or
sad), but using the same guided imagery procedure (Holmes and
Mathews, 2010). Based on our first study (Bakic et al., 2014),
during the first part of the task, we did not expect to find
group differences in rough measures of learning (e.g., accuracy).
We surmised, however, that the happy group could show a
higher learning rate (with no change in exploration), compared
to the neutral (and/or sad) group. If sad mood influences
learning performance in an opposite manner compared to the
positive mood group, then we could expect a lower learning
rate in this group compared to the two other ones (happy
and neutral). Additionally, we predicted that during the second
phase of the task where feedback information was no longer

available, happy mood could be associated with a better learning
performance than either neutral or sad mood given that this
specific mood state could bolster internalization of the task rules
and in turn exploitation (Nadler et al., 2010). Alternatively, if
positive mood truly fostered the dominant response tendency
or cognitive style (Hunsinger et al., 2012), then we could
expect that following its induction an increased use of the
learned S-R associations could be observed during this part
of the experiment where exploitation of prior knowledge was
encouraged.

MATERIALS AND METHODS

Participants
Fifty two participants (undergraduate psychology students) took
part in the study in exchange for course credits. They were
randomly assigned to one of the three mood groups: happy,
neutral or sad mood. They were all right-handed, with no
past or current neurological or psychiatric problems, they had
normal or corrected-to normal vision, and all gave written
informed consent prior to the start of the experiment. The
data of seven participants were removed according to the
following exclusion criteria (see also Bakic et al., 2014). First,
one participant was excluded in the happy group because of
the lack of a marked increase in happy mood following the
MIP compared to the baseline (i.e., the average increase was
not different than the baseline value). Likewise, one participant
was excluded from the sad group due to the lack of a marked
increase in sadness relative to the baseline mood measurement.
Finally, two participants were excluded from the neutral mood
group because their average happiness level was higher than
the mean of the happy group, whereas no change in mood
was expected to take place in this control group. Second,
participants showing no learning during the main task (i.e.,
their learning curves did not differ from chance level) were
excluded as well (n = 3; one in each group). Note that the
behavioral results obtained for the accuracy, RT and learning
rate data remained unchanged when including them in the
statistical analyses. However, because they did not show learning,
their data were deemed noisy and they were therefore removed
from the subsequent statistical analyses. The final sample
consisted of 45 participants (mean age = 20.62 years, SD = 2.29,
29 females), 14 in the happy, 14 in the neutral, and 17 in the
sad mood group. The study was approved by the local ethics
committee.

Mood Induction
We used a previously validatedMIP (Vanlessen et al., 2013, 2014;
Bakic et al., 2014). Mood was induced by means of a guided
imagery procedure, where participants were instructed to vividly
imagine reliving either a happy, neutral, or sad (depending on the
group they were assigned to) autobiographical memory (Holmes
et al., 2006, 2008). First, the participants were trained in taking
a field perspective (i.e., imagining from one’s own perspective)
during mental imagery. Then they had to choose an appropriate
happy/neutral/sad event, an episodic memory that happened at
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least a week before, and to report explicitly about it. For the recall
that would ensue, they were instructed to keep their eyes closed
and visualize all the specificities of the memory, and to use the
field perspective (Watkins and Moberly, 2009; based on Holmes
et al., 2008). The actual recall session was divided into two parts
of 30 s each, and in between participants were asked questions
about different aspects of the happy/neutral/sad memory they
were imagining. Participants were blind to the real purpose
of the procedure, believing that it was about remembering
an event from the past as vividly as possible (and not about
re-experiencing the actual emotion of this specific event). After
each mood induction, participants marked on 10 cm horizontal
visual analog scales (VAS) their current level of happiness,
pleasantness, and sadness, with ‘‘neutral’’ on one end/anchor to
‘‘as happy/pleasant/sad as I can imagine’’ on the other. Arousal
was measured on a 9-point Likert scale.

Probabilistic Learning Task
A modified version of the probabilistic learning task previously
validated by Eppinger et al. (2008) was used in this study, with
the first phase of the experiment being the same as in previous
studies (Eppinger et al., 2008; Bakic et al., 2014; see Figure 1B)
During this phase, participants were asked to decipher and
learn, by trial and error, several hidden S-R mappings. For
each trial, participants were asked to decide, with a time limit,
whether the stimulus shown on the screen was associated with
response 1 or 2. Visual feedback regarding the actual choice
made by the participant was given following each and every
response made during this first phase. Upon completion of
this first phase, participants move to the second phase of
the experiment, where a generic and uninformative feedback
was now presented but task instructions remained unchanged
(Figure 1C).

Participants were presented with 6 visual stimuli (A-B-
C-D-E-F), belonging to three conditions (unknown to the
participants) that differed regarding the actual probability of
the S-R mapping (100, 80 or 50%). In the condition 100%,
each stimulus of the pair was always associated with one of
the two response keys, corresponding to a ‘‘deterministic’’ S-R
mapping (i.e., response 1 was always correct for stimulus A,
and response 2 for the stimulus B). In the condition 80%, the
S-R mapping was ‘‘probabilistic’’, given that stimulus C was
associated 80% of the time with response 1 (and thus 20% of
the time with the concurrent response 2), while stimulus D had
a symmetric probability for the S-R mapping. Finally, in the
condition 50% (‘‘random’’ S-R mapping), each stimulus of the
pair was associated equally often to each of the two response
keys (i.e., stimuli E and F were associated 50% of the time with
response 1 and 50% of the time with response 2). The structure
of the task is presented in Figure 1.

Colorful line drawings (Rossion and Pourtois, 2004) were
used as visual stimuli (Figure 1A), presented against a white
homogenous background on a 17-inch computer screen. These
stimuli were visual objects belonging to different semantic
categories (artifacts, buildings, musical instruments, clothes,
vehicles, furniture). Their mean size was 7 cm width × 5 cm

height, corresponding to 5× 3, 6 degrees of visual angle at 80 cm
viewing distance.

For the first phase of the experiment (Figure 1B), the trial
structure was as follows: it began with a fixation cross of 250 ms
duration, followed by a 250 ms blank screen. Then, the stimulus
was presented for 500 ms, followed by a blank screen lasting
300 ms. Response deadline was set to 800 ms following stimulus
onset. After 500 ms, performance feedback was presented for
500 ms. The feedback was provided in the form of a written
word (in Dutch) shown in black against a white homogenous
background. This word was ‘‘goed’’ (correct), ‘‘fout’’ (incorrect),
or ‘‘te traag’’ (too late). The inter-trial interval was constant
(500ms) and it corresponded to a blank screen, after which a new
trial ensued. Manual responses (i.e., key presses) were recorded
using the Cedrus response box. After participants completed 240
trials (6 stimuli× 40 repetitions), trial structure changed. During
this second phase (Figure 1C), trial structure was the same as
for the first phase of the experiment, with the following notable
exception: instead of a meaningful feedback response (informing
the participant about his actual accuracy) appearing on the screen
after each manual response, there were three ‘‘×’’ signs shown
as visual feedback each time (in the same location and for the
same duration as in the previous phase of the experiment). In this
way, trial structure remained identical, the only difference being
the lack of informative external feedback. Participants performed
120 trials (6 stimuli × 20 repetitions) with this uninformative
feedback (‘‘no feedback’’ condition hereafter).

Each participant completed two blocks of 360 trials (240 with
and 120 without feedback). Each block had six different stimuli.
Accordingly, participants had to learn six new S-R associations in
each block. Trial order within a block as well as the order of the
two blocks were alternated across participants.

Procedure
In order to get acquainted with the task, participants first
completed a short practice session of 20 trials. Next, a happy,
neutral, or sad mood was induced by means of the MIP before
the beginning of the first block. In order to sustain the targeted
mood throughout the whole experimental session, the same MIP
was briefly rehearsed (5 min) during both blocks, every 120 trials
(corresponding to two bins; see data analysis here below). The
same procedure was also repeated during the break between two
blocks. Hence, in total, participants encountered theMIP 7 times.
Additionally, participants assigned to the sad group received one
more MIP at the very end of the experiment. This MIP consisted
of actively reliving a happy past memory episode (very much like
what was made in the happy mood group) in order to make sure
that these participants (sad mood group) would not leave the lab
with a lingering sadmood. Self-ratings after thisMIP showed that
happiness ratings for the sad mood group went back to a neutral
mood baseline, being in turn comparable to those of the neutral
mood group after the experiment (see Figure 2).

In order to strengthen the effect of mood, an evaluative
feedback was added (rewarding in the happy mood group,
neutral in the neutral group, and mildly negative in the sad
mood group) at the end of each block. This (bogus) feedback
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FIGURE 1 | Schematic illustrations of (A) the task structure with different probabilities assigned to different stimuli, (B) the trial structure in the first
phase of the experiment where the feedback was provided after each response (and both exploration and exploitation were therefore required), and
(C) the trial structure in the second phase of the experiment where an uninformative feedback was provided (and exploitation was encouraged).

consisted of a small text fragment shown on the screen, informing
participants that they had to wait briefly until the computer
had calculated online their learning performance up to that trial
number. After a few seconds, an Excel-like scatter plot appeared
on the screen, showing them their performance level allegedly
relative to a group of peers. Their score was indicated bymeans of
a color dot. This dot was positioned systematically either higher
up in the distribution of scores for participants in the happy
mood group, somewhere in the middle of the distribution for
those belonging to the neutral mood group, and slightly lower
for the participants in the sad mood group. Next to this scatter
plot, a specific written message was included. It informed them
to try to keep the same level of performance or perform better
if possible. Manipulation checks based on VASes (see ‘‘Results’’

Section below) confirmed that this procedure (combined with
the MIP) actually produced the desired effects: an increase of
happiness in the happy mood group, with no change in affect
(neither happy, nor sad) in the neutral mood group, and a
decrease of happiness in the sad mood group. However, it should
be mentioned that because we used the MIP in conjunction
with this bogus feedback manipulation, the changes in mood
observed (at the subjective level; see results here below) were
likely to be explained no only by the MIP, but also (albeit to
a lower degree) by some motivational processes involved in
the processing of this (bogus) feedback information. However,
we have good reasons to believe that the change in happiness
(or sadness in the sad mood group) was mainly due to the
MIP and the use of guided imagery (see also Vanlessen et al.,
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FIGURE 2 | Happiness ratings shown separately for the happy, neutral
and sad mood group as a function of time. Each point represents the
mean and the error bar corresponds to 1 standard error of the mean.

2013, 2014), and not so much to this (infrequent) feedback
manipulation that occurred only four times during the course
of the experiment. Moreover, after each block, participants were
asked to indicate, for each of the 6 stimuli, the clarity and
certainty of each of the six S-R associations, by means of a
horizontal 10 cm VAS. Furthermore, they were asked to rate
the amount of positive vs. negative feedback they thought they
received during this last block (using a 10 cm VAS going
from ‘‘exclusively negative’’ to ‘‘exclusively positive’’), as well
as how much they liked or disliked these positive vs. negative
feedback when receiving them (using a Likert scale spanning
from 0 to 100).

Finally, participants were asked to fill out two trait-related
questionnaires: the BeckDepression Inventory (Beck et al., 1996),
and the Resilience scale translated in Dutch (Portzky et al., 2010).
The whole experiment lasted for about 2 h.

Data Analysis
Mood Manipulation
The efficiency of the increase/decrease in happy mood (relative
to the neutral group) following the MIP was assessed by means
of mixed model ANOVAs with group (n = 3) as between subjects
factor and time (n = 7) as within subjects factor.

Accuracy Analyses
Accuracy data were expressed in proportions of correct responses
from the total number of trials, separately for each probability
(n = 3). Moreover, for each probability separately (2 stimuli ×
40 repetitions), changes of learning performance as a function of
time were captured by grouping the data into bins of equal sizes
(i.e., 20 trials; see Eppinger et al., 2008; Bakic et al., 2014 for a
similar approach). These data were then submitted to a mixed
model ANOVA with Group (n = 3) as between subjects factor,
and Probability (n = 3) and Bin (n = 4) as within subjects factors.
Additionally, in order to compare possible differences between
learning with vs. without feedback, we averaged the scores of bins
3 and 4 together (exploitation and exploration), and bin 5 and 6
(exploitation only), and submitted these mean values to a mixed

model ANOVA with Group as between subjects factor, and
Probability and Phase as within subject factors. Where necessary,
Greenhouse-Geisser correction for sphericity was performed,
and corrected p values were reported, together with uncorrected
eta square measure of effect size.

RL Model
For the first phase of the experiment (with feedback information
provided to the participants), we used two complementary
measures based on the modeling procedure described previously
in Bakic et al. (2014). We computed first the learning rate
parameter (α), which determines the impact of the most recent
feedback on the current S-R association, such that higher
learning rates correspond to larger fluctuations in response
behavior from trial to trial while lower learning rates index more
stable response behavior. We also calculated a second parameter,
β, which is a ‘‘noise’’ parameter that reflects how random choices
are (and hence it provides an indirect measure of exploration).

RESULTS

Mood
The analysis of theMIP ratings showed a significant Time∗Group
interaction for pleasantness (F(7.25,152.22) = 8.53, p < 0.01,
η2 = 0.29), happiness (F(9.45,198.40) = 11.18, p < 0.01, η2 = 0.35),
sadness (F(9.84,81.19) = 6.98, p < 0.01, η2 = 0.25), and arousal
(F(8.22,172.53) = 2.36, p< 0.05, η2 = 0.10). Themain effect of Group
was also significant for pleasantness (F(2,42) = 42.02, p < 0.01,
η2 = 0.67), happiness (F(2,42) = 43.71, p< 0.01, η2 = 0.68), sadness
(F(2,42) = 24.71, p < 0.01, η2 = 0.54), and arousal (F(2,42) = 5.79,
p < 0.05, η2 = 0.22). Independent samples t-tests for direct
comparisons between the happy and the neutral, and the neutral
and the sad group showed that there were no significant
differences at baseline, whereas in each subsequent measure
(hence following the MIP each time) the happy group showed
an increase compared to the neutral group, while the sad group
showed a marked decrease in levels of pleasantness (Table 1).
The same was true for happiness ratings (Figure 2; Table 2).
Independent t-tests for the sadness ratings (Table 3) showed
that the happy and the neutral group had comparable, low and
unchanged levels of sadness, whereas in the sad group sadness
increased after the first MIP and stayed significantly higher than
in the neutral group throughout the duration of the experiment
(except for the last measurement following a positive MIP meant
to restore a neutral mood state in this group; see methods). More
specifically, a paired sample t-test for the sad group showed that
after the final happy MIP (M = 14.5, SD = 12.2), this group
had significantly lower sadness scores than after the last sad
MIP (M = 31.36, SD = 17.64), (t(16) = 4.51, p < 0.01). At the
same time, happiness scores increased significantly from last sad
MIP (M = 18.43, SD = 14.14) to the happy MIP (M = 48.43,
SD = 17.09), (t(16) = −7.04, p < 0.01). The happy and the sad
group did not differ significantly in arousal levels (Table 4), but
the sad group showed somewhat lower arousal scores than the
neutral group.
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TABLE 1 | Results of the Pleasantness scores.

Measure point Pleasantness

t-test

Happy Neutral Sad Happy vs. Neutral Neutral vs. Sad

Baseline 47.32 (15.91) 46.38 (15.93) 43.90 (13.28) 0.16 0.47
1 65.01 (7.14) 47.86 (12.49) 32.90 (12.23) 4.46∗∗ 3.36∗∗

2 64.57 (10.18) 45.25 (21.56) 24.67 (11.96) 3.03∗∗ 3.36∗∗

3 66.36 (8.38) 51.14 (13.97) 27.68 (14.72) 3.49∗∗ 4.52∗∗

4 67.12 (10.78) 49.06 (19.19) 22.47 (15.30) 3.07∗∗ 4.30∗∗

5 68.35 (6.80) 45.74 (20.24) 24.39 (15.08) 3.96∗∗ 3.36∗∗

6 67.46 (7.71) 46.62 (21.47) 21.60 (13.15) 3.42∗∗ 4.00∗∗

Means (+1 Standard Deviation) and results of the group comparison (based on independent-samples t-tests) between the Happy and Neutral (df = 26) or the Neutral and

Sad (df = 29) mood Group. ∗p < 0.05, ∗∗p < 0.01.

TABLE 2 | Results of the Happiness scores.

Measure point Happiness

t-test

Happy Neutral Sad Happy vs. Neutral Neutral vs. Sad

Baseline 45.59 (10.84) 48.05 (10.04) 42.55 (15.55) −0.62 1.14
1 64.16 (9.19) 43.64 (13.33) 24.75 (15.03) 4.74∗∗ 3.66∗∗

2 62.87 (9.79) 41.73 (22.46) 22.12 (15.69) 3.23∗∗ 2.87∗∗

3 66.28 (8.26) 48.29 (16.76) 23.05 (15.38) 3.60∗∗ 4.37∗∗

4 68.56 (7.88) 46.27 (20.40) 21.30 (16.61) 3.81∗∗ 3.86∗∗

5 68.81 (5.97) 44.28 (17.64) 21.07 (16.91) 4.93∗∗ 3.73∗∗

6 67.88 (7.52) 47.71 (20.22) 18.43 (14.14) 3.50∗∗ 4.74∗∗

Means (+1 Standard Deviation) and results of the group comparison (based on independent-samples t-tests) between the Happy and Neutral (df = 26) and the Neutral

and Sad (df = 29) mood Group. ∗p < 0.05, ∗∗p < 0.01.

Too Late Responses
The number of too late responses was modest (M = 1.64,
SD = 0.93) and not different between the three mood groups
(p’s > 0.05). There was a significant Group∗Bin interaction
(F(10,210) = 3.02, p < 0.01, η2 = 0.13), showing that neutral
group had a larger number of too late responses compared to
the other two groups for the final two bins without feedback.
Additionally, there was a significant main effect of Probability
(F(2,84) = 9.64, p < 0.01, η2 = 0.19), and Bin (F(3.71,155.95) = 2.94,
p < 0.05, η2 = 0.10). In the deterministic condition (M = 1.37,

SD = 0.93), the number of too late responses was lower than
in the random condition (M = 2.02, SD = 1.19), (t(44) = −5.20,
p < 0.01), but not different than in the probabilistic condition
(M = 1.54, SD = 1.06), (p > 0.05). This latter condition differed
significantly from the random condition (t(44) =−3.48, p< 0.01).
Moreover, paired samples t-tests showed that the number of too
late responses differed only between bin1 (M = 2.08, SD = 1.39)
and bin2 (M = 1.76, SD = 1.38) (t(44) = 2.34, p < 0.05), while the
other comparisons between bins did not reach significance (all
ps > 0.05).

TABLE 3 | Results of the Sadness scores.

Measure point Sadness

t-test

Happy Neutral Sad Happy vs. Neutral Neutral vs. Sad

Baseline 13.59 (10.48) 8.82 (8.38) 11.64 (9.47) 1.33 −0.87
1 6.39 (7.54) 7.04 (5.80) 31.67 (14.68) −0.25 −5.90∗∗

2 5.41 (7.32) 9.32 (12.17) 33.39 (15.73) −1.03 −4.68∗∗

3 7.21 (7.95) 8.06 (6.70) 33.51 (17.83) −0.31 −5.04∗∗

4 6.28 (7.25) 5.66 (6.98) 28.06 (18.06) 0.23 −4.37∗∗

5 5.31 (6.61) 9.35 (11.25) 27.60 (19.17) −1.16 −3.14∗∗

6 8.82 (10.02) 7.94 (6.32) 31.36 (17.64) 0.28 −4.72∗∗

Means (+1 Standard Deviation) and results of the group comparison (based on independent-samples t-tests) between the Happy and Neutral (df = 26) or the Neutral and

Sad (df = 29) mood Group. ∗p < 0.05, ∗∗p < 0.01.
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TABLE 4 | Results of the Arousal scores.

Measure point Arousal

t-test

Happy Neutral Sad Happy vs. Neutral Neutral vs. Sad

Baseline 4.79 (1.12) 5.07 (1.82) 3.65 (1.46) −0.50 2.43∗

1 5.93 (1.77) 5.21 (1.37) 4.29 (1.86) 1.19 1.54
2 5.93 (2.09) 5.64 (1.69) 3.47 (1.59) 0.40 3.68∗∗

3 5.64 (2.41) 5.21 (1.37) 3.76 (1.48) 0.58 2.81∗

4 5.71 (2.64) 4.64 (1.60) 4.12 (1.65) 1.30 0.89
5 5.93 (2.20) 4.93 (1.69) 4.18 (1.74) 1.35 1.21
6 5.86 (2.31) 3.86 (1.46) 3.94 (1.64) 2.73∗

−0.15

Means (+1 Standard Deviation) and results of the group comparison (based on independent-samples t-tests) between the Happy and Neutral (df = 26) or the Neutral and

Sad (df = 29) mood Group. ∗p < 0.05, ∗∗p < 0.01.

Accuracy
Results showed a significant Probability∗Bin interaction
(F(10,420) = 6.13, p < 0.01, η2 = 0.13), as well as significant main
effects of Probability (F(1.70,71.89) = 334.96, p < 0.01, η2 = 0.89),
and Bin (F(3.92,164.70) = 34.27, p < 0.01, η2 = 0.45). This
interaction indicated, as can be seen from Figure 3, that accuracy
was higher and that learning was steeper in the deterministic
than in the probabilistic condition, while there was no learning
(across time) whatsoever in the random condition.

Next, we averaged performance for the two last Bins in the
learning phase with feedback and compared it to the two bins
of the ‘‘no feedback’’ phase in order to assess whether learning
still increased once feedback information on task performance
was removed, and exploitation only was required (Figure 3). This
analysis showed a significant main effect of Phase (F(1,42) = 10.02,
p < 0.01, η2 = 0.19), suggesting that learning still increased
reliably after removing the feedback. There was also a significant
main effect of Probability (F(2,84) = 365.28, p < 0.01, η2 = 0.90).
However, there were no significant group-related effects (all
p′s > 0.05).

FIGURE 3 | Accuracy data (i.e., proportion of correct responses)
decomposed as a function of bin, probability and group. The error bar
corresponds to one standard error of the mean.

Reaction Times (RTs) for Correct
Responses
Results showed a significant effect of Probability
(F(1.95,81.95) = 3.78, p < 0.05, η2 = 0.08). Follow-up t-tests
showed that the random condition (M = 412.61, SD = 39.32)
had marginally significantly longer RTs than the probabilistic
(M = 408.62, SD = 35.66), (t(44) = −1.85, p = 0.07). RTs
for the random condition were significantly longer than
for the deterministic condition (M = 406.78, SD = 35.22),
(t(44) = −3.05, p < 0.01). The deterministic and probabilistic
conditions did not differ significantly from each other (p > 0.05).
Unexpectedly, a significant main effect of Group was evidenced,
(F(2,42) = 10.82, p < 0.01, η2 = 0.34). Follow-up independent
t-tests showed that the sad group (M = 382.81, SD = 34.20) had
overall significantly faster RTs (see Figure 4) than the happy
(M = 424.22, SD = 19.81), (t(29) = 4.00, p < 0.01) and the neutral
mood group (M = 426.68, SD = 32.35), (t(29) = 3.64, p < 0.01).

Learning Rate
The main effect of feedback valence was significant
(F(1,42) = 172.78, p < 0.01, η2 = 0.80), showing that this

FIGURE 4 | Reaction times for correct responses decomposed as a
function of bin, probability and group. The error bar corresponds to
one standard error of the mean.
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parameter was overall larger for positive than negative feedback,
as already found in our previous study (Bakic et al., 2014). Other
effects remained all non-significant (all p′s > 0.05; see Figure 5).

Exploration Parameter
The one way ANOVA showed no significant group differences in
exploration (Figure 6).

Post-Experiment Ratings
The mixed-model ANOVA carried out on the clarity
ratings showed a significant main effect of Probability
(F(1.70,71.61) = 708.28, p < 0.01 η2 = 0.94), showing that clarity
increased monotonically as a function of increasing reward
probability (Table 5). The analysis performed on the certainty
ratings revealed a significant Phase∗Probability interaction
(F(2,84) = 76.97, p < 0.01, η2 = 0.65), as well as significant main
effects of Phase (F(1,42) = 53.12, p < 0.01, η2 = 0.56) and of
Probability (F(2,84) = 228.89, p < 0.01, η2 = 0.85). This significant
interaction was followed up by a paired t-tests to compare
certainty across the two phases for each probability separately.
The only significant difference was found in the deterministic
condition, where certainty in the no feedback Phase (M = 82.93,
SD = 5.66) was significantly higher than in the Phase with
feedback (M = 61.49, SD = 11.48), (t(44) =−15.32, p < 0.01).

The analyses pertaining to subjective reports about the
amount of positive vs. negative feedback received during the
whole experimental session, as well as the like/dislike reactions
to them revealed no significant group differences (all p’s > 0.05).

Questionnaires
There were no significant group differences on BDI or RS-nl.

DISCUSSION

In this study, we sought to assess whether happy or sad mood
could change RL, when compared to an active control condition
or group with a neutral mood content. Even though no general
consensus has emerged yet in the literature regarding effects
of mood valence on learning (Gray, 2001; Nadler et al., 2010;

FIGURE 5 | Learning rate for positive (left panel) and negative (right
panel) feedback, separately for the Happy, Neutral and Sad mood
group. The error bar corresponds to one standard error of the mean.

FIGURE 6 | Exploration parameter shown separately for the Happy,
Neutral and Sad mood group. The error bar corresponds to one standard
error of the mean.

van Steenbergen et al., 2010; Huntsinger, 2012), it is usually
agreed that being in a state of increased emotionality (either
positive or negative) alters motivational processes activated
by cues signaling reward or punishment (Lang and Bradley,
2010), and hence learning by extension when this process is
based on the direct exploitation of these incentives, like in
the present case. More specifically, our primary goal was to
assess if inducing happy mood could eventually lead to a gain
in performance during RL, especially when externally-provided
feedback information on task performance (hence cues signaling
reward or punishment) were omitted and exploitation of learned
reward probabilities was fostered. For this purpose, we adapted a
previously validated probabilistic learning task (Eppinger et al.,
2008; Unger et al., 2012; Bakic et al., 2014) and introduced
a second phase during the experiment where feedback on
task performance was removed and hence learning could no
longer be based on these (external) incentives, i.e., negative
or positive feedback regarding task performance. During the
initial phase of the experiment where this feedback information
was still available, we expected to replicate the results of
our previous study (Bakic et al., 2014), where we found that
inducing positive mood led to an increase in the learning
rate. Based on this previous study as well as the evidence
currently available in the literature, we formulated a specific
prediction: if the valence of the mood plays an important role
in RL (Bolte and Goschke, 2010; Chiew and Braver, 2014), then
happy and sad participants should behave in opposite ways.
More specifically, we expected that the learning rate would
be larger in the happy compared to the neutral mood group,
while it would be lower in the sad mood group compared
to the control mood group. Moreover, by removing feedback
as soon as learning was established, we hoped to exacerbate
possible mood-related group differences in RL, bearing in
mind that only standard accuracy and RT data could be
extracted during this specific phase of the experiment (while
computational modeling parameters could be estimated during
the first phase of the experiment only, as in our previous study;
see Bakic et al., 2014).
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TABLE 5 | Results of the Certainty and Clarity ratings.

Condition t-test

Deterministic Probabilistic Random Deterministic- Probabilistic-
Probabilistic Random

Certainty 82.64 (5.43) 73.40 (9.94) 36.18 (6.68) 7.47∗∗ 24.58∗∗

Clarity 72.16 (7.76) 47.47 (11.44) 33.03 (12.07) 14.80∗∗ 7.08∗∗

Means Means (+1 Standard Deviation) and results of the comparisons between conditions (based on t-tests, df = 44). ∗p < 0.05, ∗∗p < 0.01.

The results of this study confirm that guided imagery provides
a valid method to induce and maintain specific mood states,
characterized either by happiness or sadness. The happy mood
group had a substantial increase in self-reported levels of
happiness, comparable in size to the increase of sadness in the
sad mood group.

Learning was clearly evidenced during the first phase of
the experiment, equally strongly in the three mood groups
however, challenging our assumption that mood valence (either
positive or negative) could influence this process. Moreover,
when considering two standard learning parameters extracted
from a computational model (Jepma and Nieuwenhuis, 2011;
Bakic et al., 2014), we still failed to reveal significant
group differences, unlike what we found in our previous
study where happy mood was associated with a larger
learning rate (without concurrent change in exploration)
compared to neutral mood. Strikingly, our results for the
second phase of the experiment showed that participants
(in all three groups) continued to learn in the absence
of direct feedback information regarding task performance,
suggesting that they unambiguously used or exploited abstract
mental representations to comply with the task demands,
as opposed to using or exploring externally provided cues
signaling punishment or reward solely or primarily. However,
neither happy nor sad mood did influence this learning
process operating without exploration (second phase of the
experiment).

Nieuwenhuis et al. (2005) previously discussed the
importance of feedback delivery and content: when it is delivered
on a trial level, subjects tend to rely on external information
more than on the internal monitoring system, and this may lead
to reduced uncertainty levels as there is always an external check
of the prediction. When the feedback is removed, it is expected
that internal monitoring processes and the knowledge of the
associations will be even more activated. Our current results add
indirect support to this claim as we saw that removing feedback
content did not lead to a cost, but learning still progressed as if a
boost of exploitation was triggered by this manipulation.

The failure to replicate our previous findings for the learning
rate parameter during the first phase of the experiment (see
Bakic et al., 2014) is puzzling at first sight, given that aside from
the inclusion of a sad mood group in the current study, the
experimental procedure was kept identical between these two
studies for this phase. However, a closer look at the subjective
ratings in these two studies might give us some hints on some
of the reasons underlying this apparent discrepancy. When
comparing mood changes directly between the two studies (i.e.,

the present one and Bakic et al., 2014), we found that the MIP
in our previous study led to a large and significant difference
between the two mood groups (happy and neutral) not only in
valence, but also in arousal (t(30) = 3.10, p < 0.01), while this was
not the case in the current study (p = 0.10; see Figure 7). Hence,
in our previous study (Bakic et al., 2014), participants in the
happy mood group were not only more happy than in the neutral
mood group, but also more aroused by the MIP; an effect that
was not found in the current study. Moreover, in our previous
study, we found that the increase in happiness following the
MIP (relative to the pre-MIP baseline measurement) correlated
strongly with the increase in arousal (r = 0.63, p < 0.01), and
importantly with both the positive (r = 0.44, p < 0.01) and the
negative learning rate (r = 0.51, p < 0.01) as well. Hence, in
our previous study (Bakic et al., 2014), the higher learning rate
found in the positive than in the neutral mood group was likely
explained by changes occurring both in valence and arousal as
a function of the MIP. By comparison, no similar correlation
was evidenced in the current study. Likewise, we also failed
to find evidence in this study for significant group differences
regarding the perceived amount and like/dislike reactions to
the feedback given during the RL task, while we did so in
our previous study (see Bakic et al., 2014), suggesting that
the elected MIP had probably a different and stronger impact
(in terms of emotional changes brought about) in the positive
mood group in our previous compared to the current study.
Accordingly, it is tempting to conclude that our failure to
replicate our previous findings for the learning rate (which was
increased in the happy compared to the neutral mood group;
see Bakic et al., 2014) in the present study might be imputed to
the failure to elicit a reliable increase in levels of arousal in the

FIGURE 7 | Arousal ratings shown separately for the Happy and the
Neutral mood group of Bakic et al. (2014) (left panel), and the three
different mood groups of the current study (right panel).
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happy compared to the neutral or sad mood group with ourMIP.
More generally, we believe this systematic comparison between
our two studies is valuable because it confirms that arousal is
probably an important dimension to consider (besides valence
per se) in order to better understand modulatory effects on RL
as a function of positive mood, as we previously observed (Bakic
et al., 2014) but failed to replicate here. However, it should be
added that in the domain of creative thinking, earlier studies
already showed that (positive) valence, rather than arousal per
se, was accompanied by a gain in performance (Isen et al.,
1987), suggesting that during the encounter of positive mood
or affect, valence and arousal could very well have different
effects depending on the specific context and task demands. As a
matter of fact, arousal has often been conceived as an important
determinant of learning (and more specifically the exploration-
exploitation trade-off) in the past, providing salience information
to the organism. For example, according to the adaptive gain
theory of Aston-Jones and Cohen (2005), exploration and
exploitation are two decision strategies that depend directly on
tonic and phasic changes in arousal, which is modulated by
salience estimation generated in prefrontal areas. Jepma and
Nieuwenhuis (2011) previously used this specific framework
using a ‘‘four-armed bandit’’ task in healthy adult participants
(without any mood induction) and showed that changes in the
pupil diameter (a putative index of locus coeruleus activity)
correlated with transitions from exploration to exploitation. A
recent study corroborated the assumption that arousal-related
processes (captured by the pupil size) indeed contributed to
shape learning in a volatile setting (Browning et al., 2015).
Moreover, Fröber and Dreisbach (2012) recently confirmed the
importance of arousal during the experience of positive affect
to account for modulatory effects of the current affective state
on proactive control mechanisms. Speculatively, it may therefore
be the case that our MIP in the present study failed to increase
arousal substantially in the happy mood group (unlike what we
found in Bakic et al., 2014), which in turn did not change the
exploration-exploitation trade-off and/or the learning rate in this
group. Alternatively, arousal (resulting from the MIP we used
here and in our previous study) could also foster probabilistic
learning, when elicited to a sufficient degree, by influencing
specific (short-term) memory processes needed to resolve the
task, given that arousal usually heightens memory (Mather and
Carstensen, 2005; Clewett and Mather, 2014). At any rate, future
studies are needed to assess whether (positive) mood valence
could create changes in RL if and only if this specific mood
state is accompanied by variations along the arousal dimension
too.

Several limitations of our study warrant comment. First,
if arousal plays an important role in mediating effects of
mood on RL, then it is likely that a MIP tailored to increase
arousal selectively (rather than valence) might provide a
more promising avenue to evidence effects of mood on the
exploration-exploitation trade-off during RL (Knutson et al.,
2014). Here by contrast, we created three groups differing
primarily regarding the valence of the mood induced (happy,
sad or neutral), which may eventually have blurred rather
than cleared some of the group differences during RL. The

choice of a (low-arousing) sad mood as comparison for the
happy mood group was motivated by many earlier studies and
models in the literature arguing that sadness can be conceived
as the opposite of happiness, as well as a good proxy of the
anhedonic component in depression, for which there is already
good evidence for modulatory effects on learning behavior,
especially when it is based on either reward or punishment
incentives/cues (Taylor Tavares et al., 2008; Chase et al., 2010;
Padrão et al., 2013; Liu et al., 2014; Pizzagalli, 2014). However,
in our study, despite the successful experience of sad mood,
we note that participants from this group did not perform
worse during the probabilistic learning task (for none of the
two phases) than the two other mood groups, casting doubt in
turn on the notion that effects of sad mood on learning and
cognition can simply be opposed to effects associated with happy
mood.

Second, even though happy or sadmood did not alter learning
at the behavioral (or computational modeling) level, we cannot
rule out the possibility that these mood states could influence
specific electrophysiological markers of RL, including the ERN
and FRN components. Noteworthy, in our previous study (Bakic
et al., 2014), we found that happy compared to neutral mood
increased the ERN component in the deterministic condition
selectively. Accordingly, it could be valuable in future studies
to add EEG correlates of RL and performance monitoring
(Koban and Pourtois, 2014) in order to assess whether mood
could alter early stages of error monitoring (in the absence
of obvious changes at the behavioral level) or not, especially
when feedback information on task performance is removed and
learning has therefore to operate primarily based on the direct
exploitation of known S-R associations (carrying a high reward
probability).

Finally, the probabilistic learning task used here (relying
on a simple speeded two-alternatives forced choice task; see
Eppinger et al., 2008) may not be sensitive enough to capture
subtle changes in learning related to labile mood states, such
as elicited after the MIP (based on guided imagery) used in
this study. Perhaps mood does change choice behavior, but not
decision making per se, a hypothesis that would require the use
of other experimental paradigms than the one used here, and
where not only the amount but also the type of learning strategy
at stake could be probed (see Frank et al., 2015). Presumably,
the specific structure of the task used here, as well as the
specific task requirements, may have weakened the expression
of mood-related changes during RL. Likewise, reversal learning
paradigms (see Chase et al., 2011) or more complex and volatile
learning environments based on the use of more than two-
alternatives forced choice task (see Jepma and Nieuwenhuis,
2011; Browning et al., 2015) could perhaps help to reveal clearer
and stronger modulatory effects of either positive or negative
mood on RL.
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