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Background:Major depressive disorder (MDD) creates debilitating effects on awide rangeof cog-

nitive functions, including reinforcement learning (RL). In this study, we sought to assess whether

reward processing as such, or alternatively the complex interplay betweenmotivation and reward

might potentially account for the abnormal reward-based learning inMDD.

Methods: A total of 35 treatment resistant MDD patients and 44 age matched healthy controls

(HCs) performed a standard probabilistic learning task. RL was titrated using behavioral, compu-

tational modeling and event-related brain potentials (ERPs) data.

Results: MDD patients showed comparable learning rate compared to HCs. However, they

showeddecreased lose-shift responses aswell as blunted subjective evaluations of the reinforcers

used during the task, relative to HCs. Moreover, MDD patients showed normal internal (at the

level of error-related negativity, ERN) but abnormal external (at the level of feedback-related neg-

ativity, FRN) reward prediction error (RPE) signals during RL, selectively when additional efforts

had to bemade to establish learning.

Conclusions:Collectively, these results lend support to the assumption thatMDDdoes not impair

rewardprocessingper seduringRL. Instead, it seems toalter theprocessingof theemotional value

of (external) reinforcers during RL, when additional intrinsic motivational processes have to be

engaged.
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1 INTRODUCTION

In an attempt to shed light on the defining emotional deficit charac-

terizing MDD, many bets in the state of the art research are currently

placed on anhedonia, one of the cardinal symptoms of this mental

illness. Defined as a “loss of pleasure or lack of reactivity to pleasurable

stimuli” (Pizzagalli, 2014), anhedonia is hypothesized to account

for learning deficits visible in MDD when reward processing and

utilization is crucial, such as in reinforcement learning (RL). Using this

framework, two studies previously showed the reduced development

Abbreviations: AD, antidepressant; BDI, Beck Depression Inventory; CI, confidence interval;

ERN, error-related negativity; ERPs, event-related brain potentials; FRN, feedback-related

negativity; HCs, healthy controls; HRSD, Hamilton Rating Scale for Depression; iTBS,

intermittent theta burst stimulation;MDD,Major depressive disorder; RL, reinforcement

learning; RPE, reward prediction error; VAS, visual analogue scale

of an implicit positivity bias (or active pursuit of rewarding out-

comes) across time in MDD patients with high anhedonia (Pizzagalli,

Iosifescu, & Hallett, 2009; Vrieze, Pizzagalli, & Demyttenaere, 2013).

However, in these earlier studies, monetary/secondary reward was

used (Sescousse, Caldú, Segura, & Dreher, 2013). Unlike monetary

reward for which a fixed value is usually provided to the participant,

goal attainment relates to the (subject specific) hedonic experience

encountered (or anticipated) when a cue signals that the task at hand

has been fulfilled, and self-efficacy is in turn transiently reinforced

(Bandura, 1997; Locke & Latham, 2002).

Because reward-related cues informing about self-efficacy (e.g.,

feedback on task performance) necessarily provide potent motiva-

tional signals to the organism, their swift use to guide learning might

be compromised by MDD. The goal of this study was to test this pre-

diction, using a multimethods approach. RL is paradigmatic example of

Depress Anxiety 2016; 00: 1–8 c© 2016Wiley Periodicals, Inc. 1wileyonlinelibrary.com/journal/da
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a situation where internal and external cues have to be used timely to

guide the course of learning. At the electrophysiological level, this pro-

cess has been associated with the generation of the error-related neg-

ativity (ERN, response locked) and feedback-related negativity (FRN,

feedback locked) event-related potential (ERP) component, respec-

tively (Holroyd&Coles, 2002). TheERNandFRNare thought to reflect

phasic reward prediction error (RPE) signals (either based on an inter-

nal/motor or external cue)

In this study, we tested a well-defined cohort of treatment resis-

tant MDD patients (with high level of anhedonia) and compared their

learning performance and RPE signals (using conventional EEG/ERP

methods) during a probabilistic learning task (Eppinger, Kray, Mock,

& Mecklinger, 2008; Unger, Heintz, & Kray, 2012) to a group of age

and education level matched healthy controls (HCs). We assessed if

MDD could impair internal (ERN) and/or external (FRN) RPE signals,

and whether it would be associated with decreased RL (at the behav-

ioral level) compared to HCs in this task (Pizzagalli et al., 2009). Given

that we used motivationally significant (self-efficacy related) reward

and punishment cues as learning signals (Frank, Woroch, & Curran,

2005; Gründler, Cavanagh, & Figueroa, 2009), we surmised that MDD

might very well influence it in a way that directly depends on reward

probability and effort investment to achieve learning (Thomsen, 2015).

More specifically, when extra efforts are required to establish learning,

abnormal RPE signals (and hence abnormal RL) should be observed in

this condition (see (Salamone, Correa, Farrar, &Mingote, 2007) for evi-

dence with nonhuman data).

2 METHODS

2.1 Participants

Sixty nondepressed HCs (35 females, 25 males, mean age: 37.90, SD =
12.82) and forty-two individuals meeting the Diagnostic and Statisti-

cal manual of Mental Disorders 4 criteria (American Psychiatric Asso-

ciation, 2013) for MDD (30 females, 12 males, mean age: 41.40, SD =
12.04) participated in the current study. The two groupswerematched

for age, sex, and education. All participants had normal or corrected to

normal vision.

The patients were all diagnosed with MDD by using the Mini-

International Neuropsychiatric Interview (Sheehan, Lecrubier, & Shee-

han, 1998). Depression severity was assessed with the 17-itemHamil-

ton Rating Scale for Depression (HRSD) (Hamilton, 1967), and the

21-itemBeckDepression Inventory (BDI) (Beck, Steer, &Brown, 1996)

by a certified psychiatrist. They filled in the Snaith-Hamilton Pleasure

Scale (Snaith, Hamilton, &Morley, 1995), and the Temporal Experience

of Pleasure Scale (Gard, Gard, Kring, & John, 2006). These patients

were classified as at least Stage I treatment resistant (Rush, Thase,

& Dubé, 2003). All patients were free from any antidepressant (AD),

neuroleptic and mood stabilizer for at least 2 weeks. Exclusion crite-

ria were (1) bipolarity, (2) a history of neurological disorders, includ-

ing epilepsy, head injury, and a loss of consciousness, (3) a history of

electroconvulsive therapy, (4) a past or present substance abuse, (5)

past or present experienceof psychotic episodes. Finally, someof those

admitted to the studywere excluded a posteriori for the following rea-

sons: (6) balancing average age between the two samples (n = 4 HCs),

(7) insufficient or no learning during the RL task (i.e., below chance

level). The data of 16 participants (11 in the HC and 5 in the MDD

group)were excluded accordingly, and (8) additional three (1 inHCand

2 in MDD group) due to excessively noisy EEG signal. Based on these

criteria men were excluded significantly more than women (𝜒2(3) =
9.44, P= .024). The two groups did not differ significantly for the num-

ber of participants excluded (P = .172). Importantly, inclusion of these

participants did not change the results of the analyses reported below,

however itwas decided not to include them in these analyses to reduce

thenoise in thedata. Thefinal sample consistedof 44HCs and35MDD

patients. Demographic and clinical data are presented in Table 1. The

study was approved by the ethics committee of the Ghent University

Hospital.

2.2 Probabilistic learning task

We used a probabilistic learning task previously devised by Eppinger

et al. (2008) and used by Bakic, Jepma, De Raedt, and Pourtois (2014)),

as well as by Unger et al. (2012). After a fixation cross of 250 ms

duration, and a blank screen (250 ms), a visual stimulus (S) was pre-

sented for 500 ms on each trial against a white homogenous back-

ground on a 17-inch computer screen. Its mean size was 7 cm width ×
5 cm height, corresponding to 5 × 3.6 degrees of visual angle at 80

cm viewing distance. Participants performed a two-alternative forced

choice task and decide (with a 800ms response deadline) whether the

stimulus was associatedwith response (R) 1 or 2. After a 500ms blank,

they received (visual) feedback (500 ms), informing about the accu-

racy of their action. The intertrial interval was 500 ms. Unbeknownst

to the participant, three stimulus conditions (corresponding to three

different reward probabilities) were used in random order: the S-R

association was deterministic, probabilistic or random (see Support-

ing Information). Each participant completed two blocks of 240 trials.

Each block had six different stimuli (therewere each time twodifferent

stimuli used per condition), each repeated 40 times. Trial order within

a block, as well as the order of the two blocks was alternated across

participants.

2.3 Procedure

Prior to the actual testing session, participants were asked not to con-

sume any caffeine or nicotine. After the EEG preparation, they first

performed a practice of 20 trials, after which the experimental session

began. After each block, participants were asked to indicate, for each

of the 6 stimuli, the clarity and certainty of each of the six S-R associa-

tions, by means of a horizontal 10 cm visual analogue scale (VAS). Fur-

thermore, they were asked to rate the amount of positive versus nega-

tive feedback they thought they received during this last block (using a

10 cm VAS going from “exclusively negative” to “exclusively positive”),

as well as howmuch they liked or disliked this positive versus negative

feedback when receiving them (using a Likert scale spanning from 0 to

100).
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TABLE 1 Demographic and clinical data

HC MDD t-test d

N 44 35

Age 37.89 (12.23) 43.00 (11.67) −1.88 −0.43

Sex 28F/16M 27F/8M

∗𝜒2 = 1.68, P= .23

Age at onset 24.6 (11.03)

Length of episode (months) 20.81 (32.05)

Number of episodes 3.14 (2.61)

HRSD 1.42 (2.37) 21.83 (5.63) −21.79∗∗ −4.93

BDI_II 5.98 (6.75) 30.21 (10.27) −12.16∗∗ −2.86

Anhedonia 0.98 (1.37) 4.66 (2.25) −8.97∗∗ −2.03

TEPS 75.02 (19.22) 58.97 (17.04) 3.81∗∗ 0.88

Consumatory 36.05 (9.57) 28.76 (9.02) 3.39∗∗ 0.78

Inhibitory 38.89 (10.94) 30.21 (8.95) 3.76∗∗ 0.89

SHAPS 0.55 (2.16) 7.31 (4.09) −9.45∗∗ −2.14

Notes:Means (standarddeviations) areprovided. Independent samples t-test differences areprovided forHRSD (df=77), BDI II (df=72),Anhedonia subscale
of BDI II (df= 77), TEPSwith the corresponding subscales (df= 74), and SHAPS (df= 77).
∗P< .05,
∗∗P< .01

2.4 EEG recording

EEG was recorded continuously using 64 channels by means of a

Biosemi Active Two system (www. Biosemi.com). The EEG was sam-

pled at 512 Hz, with CMS-DRL serving as the reference-ground. The

EEG signal was filtered off line, using a 0.016 to 70Hz filter (12 db/oct),

with a 50 Hz notch and rereferenced using the linked (average) mas-

toids. For response-locked ERPs (ERN), individual epochs were seg-

mented using a±500ms interval around the response (see ref (Aarts &

Pourtois, 2010; Aarts, Vanderhasselt, & Otte, 2013; Pourtois, 2011)).

For feedback-locked ERPs (FRN), epochingwasmade 200prior to until

800 ms following feedback onset. Eye blinks were removed automati-

cally via vertical ocular correction (Gratton, Coles, & Donchin, 1983),

using two electrodes, placed above and below the right eye. Individ-

ual epochs were baseline corrected using the first 200 ms of the pre-

response time-interval for the ERN (i.e., from −500 to −300 ms prior

to response onset) and the entire prestimulus time interval for the FRN

(i.e., 200ms).

Artifact rejection was based on a ±100 𝜇V amplitude cutoff. For

response-locked segments, it led to 84.64% of the individual segments

being kept and eventually included in the individual averages. No sig-

nificant group difference [HCs:M = 84.46, SEM = 0.84; MDD patients:

M = 84.39, SEM = 1.08; t (84) = 0.51, P = .96] was found for this met-

ric. For feedback–locked segments, 84.86% of the individual epochs

were kept. No group difference was found for this metric either [HCs:

M = 85.25, SEM = 0.97; MDD: M = 84.42, SEM = 1.22, t (75) =
0.54, P = .59]. Finally, individual epochs were averaged separately for

the different conditions and subjects, and an additional low pass fil-

ter set to 30 Hz was applied on the individual averages before grand

averaging.

2.5 Data analysis

Behavioral data (accuracy and switch after negative feedback) were

analyzed by means of a mixed model ANOVAwith group as a between

subjects factor, and condition (n = 3) and bin (n = 4, where trials were

grouped in four parts of 60 trials, 20 per condition) as a within sub-

ject factor. Switch after negative feedback captures the sensitivity to

negative feedback and has been described as a change of lose-shift

strategy (see ref (Bellebaum, Kobza, & Ferrea, 2016; KM, Zhang, Schiff,

& Mackey, 2015)). Where necessary, Greenhouse-Geisser correction

for sphericity was performed, and corrected P-values were reported,

together with the effect size and the 95% confidence interval (CI)

around this value.Descriptionof theRLmodel canbe found in Support-

ing Information. The resulting learning rate (𝛼), calculated separately

for positive and negative feedback, was analyzed using an ANOVA,

followed up by an independent sample t-test. Possible changes in the

concurrent exploration parameter (𝛽) between the two groups were

assessed by an independent sample t-test.

For the ERN, themean amplitudewas calculated in an interval span-

ning 100 ms after response onset at electrode FCz. For the FRN, we

used a similar 100 ms time interval (centered around the peak; 50 ms

prior and50msafter it) and calculated themeanamplitudeof this com-

ponent at the same frontocentral electrode (see ref. (Eppinger et al.,

2008)). The FRNpeakwas defined as themost negative deflection aris-

ing at electrode FCz in the 230–350 ms time window following feed-

back onset. A mixed-model ANOVA was performed on the average

mean amplitudes with group as between subjects and condition and

response accuracy as within subject factors. In a second step, we com-

puted difference waveforms by subtracting the ERP activity of incor-

rect from correct trials, separately for the ERN and FRN components,
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F IGURE 1 (A) Accuracy data (i.e., proportion of correct responses) decomposed as a function of bin, condition, and group. (B) Mean number of
switches after negative feedback (expressed here in proportion) decomposed as a function of bin and group. (C) Clarity and (D) certainty ratings
decomposed as a function of condition and group

following standard practice (Eppinger et al., 2008). The FCz electrode

was selectedbasedonpreviouswork (Eppinger et al., 2008; Franket al.,

2005) showing the strongest expression of these two ERP components

at this frontocentral location.

3 RESULTS

3.1 Behavioral results

The number of too late responses was modest (M = 3.45, SD = 1.83)

and significantly higher for theMDDgroup than for theHC group (F (1,

77)= 9.51, P= .003, 𝜂p
2 = .11, 95%CI [.02–.22]).

The analysis of the proportions of correct responses (Fig. 1A)

showed a significant condition × bin interaction (F(4.72, 363.30) =
31.92, P < .001, 𝜂p

2 = .29, 95% CI [.22, .34]), as well as significant main

effects of condition (F(2, 154) = 295.14, P < .001, 𝜂p
2 = .79, 95% CI

[.75, .82]) and bin (F(2.74, 210.86) = 73.86, P < .001, 𝜂p
2 = .49, 95%

CI [.33, .48]). These effects translated a steep learning across time in

thedeterministic condition, lower and intermediate in the probabilistic

condition, and with no such learning in the random condition. Groups

did not differ significantly with respect to these gross accuracy scores,

F (1, 77)= 1.68, P= .20, 𝜂p
2 = .02, 95%CI [.00, .09]).

The analysis performed on the mean number of switches after neg-

ative feedback showed a significant group×bin interaction (F(3, 231)=
3.47, P = .015, 𝜂p

2 = .04, 95% CI [.00, .08]; see Fig. 1B). Indepen-

dent t-tests showed that in the first half of the task the difference

between the two groups was not significant (t (77) = 0.25, P = .804,

d = −0.082), while during the second half of the experimental session

the MDD group (M = 0.24, SD = 0.10) had a lower number of switches

after negative feedback compared to the HCs (M = 0.30, SD = 0.10), (t

(77) = 2.88, P = .013, d = −0.6). There was a significant main effect of

condition (F (2, 154) = 8.13, P = .002, 𝜂p
2 = .10, 95% CI [.03, .17]), and

bin (F(3, 231)= 2.89, P= .034, 𝜂p
2 = .04, 95% CI [.00, .07]). Main effect

of group was not significant (F (1, 77) = 1.82, P = .181, 𝜂p
2 = .023, 95%

CI [.00, .10]).

Clarity ratings (Fig. 1C) showed a significant group × condition

interaction (F (2, 154)=3.04,P= .051, 𝜂p
2 = .04, 95%CI [.00, .09]) and a

main effect of condition (F (2, 154)=311.70,P< .001, 𝜂p
2 = .80, 95%CI

[.76, .83]). Independent t-tests showed that in the deterministic condi-

tion, the HC group (M = 77.09, SD = 11.33) rated the S-R associations

to be clearer than the MDD group (M = 70.78, SD = 13.93), (t (77) =
2.22, P = .029, d = 0.50). There was no significant group difference

for the two other conditions (all P’s > .05). Certainty ratings (Fig. 1D)

revealed a significant main effect of group (F (1, 77) = 5.23, P = .025,

𝜂p
2 = .06, 95% CI [.00, .17]). Additionally, the HC group (M = 40.73,

SD=10.67) rated that they had receivedoverall significantlymore pos-

itive feedback than the MDD group (M = 25.74, SD = 9.84), (t (77) =
4.68, P < .001, d = 1.47). The HC group (M = 52.74, SD = 9.84) also

reported liking the positive feedback significantly more than theMDD

group (M = 44.39, SD = 23.73), (t (77) = 2.12, P = .037, d = −0.48).
The two groups did not differ significantly with respect to how much

they disliked receiving negative feedback (t (77) = −1.27, P = .208,

d=−0.29).

3.2 Computational modeling

For the learning rate, there was a significant main effect of feedback

valence (F (1, 77)= 145.93, P< .001, 𝜂p
2 = .66, 95%CI [.55, .72]) show-

ing higher values following positive feedback (M = 0.32, SD = 0.23)

than negative feedback (M = 0.04, SD = 0.08), replicating previous

results (Bakic et al., 2014). The interaction with group was nonsignifi-

cant (F (1, 77)=0.78,P= .380, 𝜂p
2 = .01, 95%CI [.00, .07]), nor themain

effect of group (F (1, 77)= 0.23, P= .631, 𝜂p
2 = .003, 95%CI [.00, .09]).
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F IGURE 2 Grand average ERP waveforms and topographical maps (top view) for the response-locked ERP data (electrode FCz), separately for
each condition and accuracy level, for (A) HCs and (B)MDDpatients

The group comparison performed on the inverse-gain parameter/

exploration (𝛽) revealed no significant effect (t (77) = 0.63, P = .532,

d= 0.14).

3.3 ERP results

The analysis carried out on the ERN mean amplitudes showed a sig-

nificant condition × accuracy interaction (F(1.84, 139.98) = 34.59, P

< .001, 𝜂p
2 = .31, 95% CI [.21, .40]), and main effects of condition

(F(2,152) = 9.32, P < .001, 𝜂p
2 = .11, 95% CI [.03, .18]) and accuracy

(F(1,76)= 49.25, P< .001, 𝜂p
2 = .39, 95% CI [.25, .50]). The main effect

of group was not significant (F (1,76) = 0.90, P = .347, 𝜂p
2 = .01, 95%

CI [.00, .08]), (see Fig. 2). As can be seen from the Table 2, the ERN

was large and significant in the deterministic condition, intermediate in

the probabilistic condition andmerely absent in the random condition,

with this (internal) reward probability effect being balanced between

the two groups.

By comparison, for the FRN, the analysis revealed a significant

group × accuracy × condition interaction (F(2,138) = 3.84, P = .025,

𝜂p
2 = .05, 95%CI [.06, .11]), as well as significant main effects of condi-

tion (F(2,138) = 22.45, P < .001, 𝜂p
2 = .25, 95% CI [.10, .28]) and accu-

racy (F(1,69) = 10.32, P < .001, 𝜂p
2 = .213, 95% CI [.09, .34]). The main

effect of group was not significant (F (1,69) = 0.13, P = .718, 𝜂p
2 = .00,

95% CI [.00, .06]). As can be seen from the Table 2, while reward prob-

ability yielded opposite effects on the ERN and FRN components for

HCs (with the FRN effect being the highest for the random and prob-

abilistic condition), MDD patients did not show the normal amplitude

variation of the FRN depending on reward probability. When comput-

ing difference waves (i.e., negative–positive feedback), we found that

reward probability did influence the amplitude of the FRN in the HC

group in the expected direction (F (2, 78) = 3.18, P = .047, 𝜂p
2 = .075,

95% CI [.00, .17]), while it did not in the MDD group (F (2, 52) = 1.37,

P = .26, 𝜂p
2 = .050, 95% CI [.00, .15]). Strikingly, when the S-R associ-

ation was probabilistic or random (and hence RL was more difficult to

achieve), no reliable FRN effect was detected in this latter group (see

Table 2). Importantly, this lack of normal (external) reward probability

effect inMDDpatients could not be imputed simply to noisy feedback-

locked ERPwaveforms in this group, as can be seen from Figure 3.

3.4 Relation to anhedonia

We assessed whether these abnormal RL effects seen in MDD (i.e.,

switches after negative feedback and FRN) might be related to

anhedonia severity in this sample. To this aim, we recalculated the
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TABLE 2 Mean ERP activity (1 standard deviation) for each condition and accuracy level, separately for each component and group

Group

HC MDD

ERP component Condition Correct Incorrect t-test Correct Incorrect t-test

ERN

Deterministic −1.73 −3.89 5.97∗ −1.39 −3.62 5.71∗

(4.33) (4.79) (3.84) (4.64)

Probabilistic −2.25 −2.52 1.18 −1.62 −2.00 1.57

(4.37) (4.58) (3.98) (3.70)

Random −2.95 −2.68 −1.31 −1.95 −2.03 0.43

(4.41) (4.27) (3.48) (3.12)

FRN

Deterministic 0.47 0.35 −0.65 0.90 0.29 1.76

(2.10) (1.97) (2.11) (2.68)

Probabilistic 1.11 0.29 2.84∗ 1.24 1.02 0.71

(2.34) (3.28) (2.58) (2.90)

Random 1.60 1.03 2.91∗ 1.60 1.59 0.77

(2.10) (2.09) (2.74) (2.98)

Notes:Results of the direct pairwise comparisons (degrees of freedom: 43) between the two accuracy levels (correct vs. incorrect), using post-hoc t-tests.
∗P-values were Bonferroni corrected for multiple testing (P= .008).

F IGURE 3 Grand average ERP waveforms and topographical maps (top view) for the feedback-locked ERP data (electrode FCz), separately for
each condition and accuracy level, for (A) HCs and (B)MDDpatients
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ANOVAspresentedhere aboveusing the SHAPS, TEPS, or the subscale

of the BDI as covariate in separate analyses. None of these analyses

showed significant results, however.

4 DISCUSSION

The MDD patients had more too late responses than the HCs, which

is often reported in the literature (Pizzagalli, 2014; Pizzagalli et al.,

2009). Yet, their learning slope and accuracy were similar to the HCs.

Moreover, neither learning rate, nor exploration differed between the

two groups. Noteworthy, an important difference between our study

and previous ones is that monetary (or secondary) reward was often

used (Pizzagalli, 2014), while we did not do so in the present case. Our

reward versus punishment incentives were primarily related to the

perceived task-success/failure (i.e., self-efficacy (Treadway, 2016)), as

opposed to secondary rewards or punishments, the former of which

presumably activates more abstract motivational processes (Bandura,

1997), andmore dorsal prefrontal cortical areas than the latter (Badre,

2008; Sescousse et al., 2013).

Notwithstanding the lack of clear group differences for RL when

it was assessed using standard quantitative measures, we found that

MDD patients had a lower number of switches after negative feed-

back than HCs, during the second phase of the experimental ses-

sion, selectively. This difference might stem from a different updat-

ing of trial history based on negative feedback in these two groups.

MDD patients became more conservative than HCs, as demonstrated

by their lower exploration of the alternative response option toward

the end of the experiment. Remarkably, despite a learning perfor-

mance that was matched with the HCs, these patients judged that

they had received less often positive feedback (and they liked them

less) throughout the experimental session than HCs (which was not

the case obviously), unambiguously translating blunted positive affect

at the subjective level. They also evaluated the clarity of the S-R asso-

ciations in the deterministic condition to be lower than the HCs, and

they felt overall less certain about the accuracy of their responses than

the HCs.

Our ERP results show that while internal RPE signals (at the ERN

level) were overall spared in MDD patients relative to HCs, at the

external, FRN level, when it was based on the processing of external

evaluative feedback it was abnormal. For the probabilistic and ran-

dom conditions, for which extra efforts needed to be exerted by the

agent to learn the complex rule linking the actual R to the preceding

S, the FRN was blunted, irrespective of anhedonia’s severity. Previ-

ous studies (Endrass & Ullsperger, 2014; Weinberg, Riesel, & Hajcak,

2011) reported an overactive ERN for negative affect (MDD or anxi-

ety), an effect thatwe failed to observe here. This discrepancymight be

explainedby the fact that interference tasks (suchasStrooporFlanker)

were primarily used in these earlier studies, as opposed to RL in the

present case, where error making acquires a different meaning (errors

provide potent learning signals, as opposed tomere lapses of attention

or concentration).

Lastly, we have to point out that these results were obtained in

a cohort of MDD patients that were qualified as treatment resis-

tant (because they were enrolled in a treatment study using intermit-

tent theta burst stimulation (iTBS) and treatment resistance was an

inclusion criterion therein, [see (Treadway, Bossaller, Shelton, & Zald,

2012)]). This featuremakes our results not immediately comparable to

earlier studieswhereno such criterionwasmet.Wealsohad to exclude

some participants and patients because they failed to show normal RL

at the behavioral level.

5 CONCLUSION

Our new results are compatible with recent theoretical accounts

(Thomsen, 2015; Treadway, 2016), aswell as older animalmodels (Sala-

mone et al., 2007), stating thatMDD (and anhedonia) does not dampen

rewardprocessing per se, but instead it likely alters a coremotivational

component that in turn decreases or blunts the processing of the hedo-

nic value of external reinforcers during RL. Abnormal RL as a function

of MDD is confined to externally based learning in the present case

(switches after negative feedback and FRN), but not visible for inter-

nal errormonitoring (ERN).Our findings suggest that ERNandFRNare

dissociable since they are differentially sensitive to emotional distur-

bances accompanyingMDD.We failed however to find evidence for an

association with anhedonia severity.

In this context, clinical interventions meant to improve the timely

processing of external evaluative feedback (self-efficacy related)might

ultimately provide a valuable approach to reduce the burden of nega-

tive affect and distress inMDD.
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