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A B S T R A C T

Evaluative feedback provided during performance monitoring (PM) elicits either a positive or negative deflec-
tion ~250–300 ms after its onset in the event-related potential (ERP) depending on whether the outcome is
reward-related or not, as well as expected or not. However, it remains currently unclear whether these two
deflections reflect a unitary process, or rather dissociable effects arising from non-overlapping brain networks.
To address this question, we recorded 64-channel EEG in healthy adult participants performing a standard
gambling task where valence and expectancy were manipulated in a factorial design. We analyzed the feedback-
locked ERP data using a conventional ERP analysis, as well as an advanced topographic ERP mapping analysis
supplemented with distributed source localization. Results reveal two main topographies showing opposing
valence effects, and being differently modulated by expectancy. The first one was short-lived and sensitive to no-
reward irrespective of expectancy. Source-estimation associated with this topographic map comprised mainly
regions of the dorsal anterior cingulate cortex. The second one was primarily driven by reward, had a prolonged
time-course and was monotonically influenced by expectancy. Moreover, this reward-related topographical map
was best accounted for by intracranial generators estimated in the posterior cingulate cortex. These new findings
suggest the existence of dissociable brain systems depending on feedback valence and expectancy. More gen-
erally, they inform about the added value of using topographic ERP mapping methods, besides conventional ERP
measurements, to characterize qualitative changes occurring in the spatio-temporal dynamic of reward pro-
cessing during PM.

1. Introduction

Performance monitoring (PM) is crucial to foster goal adaptive be-
havior. According to most recent models (Ullsperger et al., 2014a) it is
best conceived as a feedback loop whereby action values are learned
and updated, especially when mismatches between goals and actions
occur unexpectedly. Although these mismatches can sometimes be
processed based on internal or motor cues (e.g., response errors), in
many situations, external evaluative feedback provides the primary
source of information to guide the course of PM. At the psychophy-
siological level, there has been a rich tradition of event-related brain
potentials (ERP) research aimed at exploring the putative brain me-
chanisms underlying this loop during feedback-based PM.

Traditionally, the feedback-related negativity (FRN, sometimes
termed FN, fERN, or MFN) was put forward as the main electro-
physiological correlate of evaluative feedback processing during PM
(Holroyd and Coles, 2002; Miltner et al., 1997; Ullsperger et al., 2014b;
Walsh and Anderson, 2012). The FRN corresponds to a phasic negative

fronto-central ERP component (N200) peaking around 250 ms after
evaluative feedback (FB) onset, being typically larger for negative
compared to positive outcome, as well as unexpected relative to ex-
pected one. This negative deflection is usually preceded by a positive
ERP component (P200; Sallet et al., 2013), as well as followed by the
P300, corresponding to a large positive deflection being maximal
around 300–400 ms at central and posterior parietal scalp electrodes.

Initially, amplitude changes of the FRN (very much like the ERN,
error-related negativity, which is time-locked to response onset) have
been interpreted against a dominant reinforcement learning theory (RL-
ERN theory; Holroyd and Coles, 2002; Sambrook and Goslin, 2015;
Walsh and Anderson, 2012). In this framework, changes in the ampli-
tude of the FRN capture indirectly dopaminergic-dependent reward
prediction error signals (RPE; i.e. outcome either better or worse than
expected). Moreover, the (dorsal) anterior cingulate cortex (dACC,
sometimes termed rostral cingulate zone - RCZ; Ullsperger et al., 2014a)
is thought to be the main intracranial generator of this phasic ERP
component (Gehring and Willoughby, 2002; Miltner et al., 1997; Yeung
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et al., 2004; Yu et al., 2011). According to the RL theory, the FRN re-
flects the processing of the outcome along a good-bad (valence/out-
come) dimension, in relation to its actual expectancy. In other words,
the FRN is thought to provide an integrated neural signal during PM
where both the salience (absolute prediction error) and the valence
(signed prediction error) of the outcome are integrated (Holroyd and
Coles, 2002; Ullsperger et al., 2014a, 2014b). Consistent with this view,
many ERP studies previously reported reliable changes of the FRN
amplitude as a function of not only the valence of the feedback, but also
its expectancy, usually manipulated by means of changes in reward
probability across trials (for reviews, see San Martín, 2012; Walsh and
Anderson, 2012).

More recently, researchers have begun to explore reward processing
per se, as opposed to RPE. As a matter of fact, when the emphasis is put
on reward processing at the feedback level (especially when monetary
reward is used as main incentive), the amplitude difference seen at the
FRN level (i.e. when reward is delivered vs. omitted) can be best ex-
plained by the generation of a positive activity associated with better
than expected outcomes, rather than a negativity associated with worse
than expected ones. In the existing ERP literature, this positivity has
been named the “feedback correct-related positivity” (fCRP; Holroyd
et al., 2008) or the “reward positivity” (RewP; Proudfit, 2015). It is
elicited in the time range of the N200, and is thought to signal the
achievement of the task goal (i.e. obtaining a reward) (Foti et al., 2011;
Holroyd et al., 2008; Proudfit, 2015). In keeping with the RL-FRN
theory, Holroyd et al. (2008) reinterpreted the N200 (Towey et al.,
1980) giving rise to the FRN2 as the neural signal indicating that the
task goal has not been achieved. The N200 is usually elicited by task-
relevant events in general (i.e. unexpected outcome regardless of its
outcome, see also Ferdinand et al., 2012) and might thus be over-
shadowed by the concurrent positive deflection that is elicited by po-
sitive FB. Accordingly, given that the positive (RewP) and negative
(FRN) deflections overlap in time, it remains nowadays partly unclear
which of them best captures systematic changes in reward processing at
the feedback level as a function of reward expectancy (San Martín,
2012). Comparing ERP amplitudes at certain or pre-defined sites eli-
cited by positive (reward) or negative (no-reward) FB implicitly as-
sumes a similar source of the EEG signal accounting for them. As a
matter of fact, the question remains whether the N200 component
giving rise to the FRN is actually reduced for positive FB due to direct
inhibition of the RCZ for example (Hajihosseini and Holroyd, 2013;
Holroyd et al., 2011, 2008), or alternatively, from the superposition of
another (non-overlapping) component, being reward-related primarily
and best expressed by the RewP. In agreement with this latter inter-
pretation, Foti et al. (2011) provided evidence that such a positive
component could result from the activation of the putamen within the
basal ganglia (but see the methodological objections raised by Cohen
et al., 2011; and the following reformulation in Proudfit, 2015). Fur-
ther, the same authors (Foti et al., 2015) recently argued that the FRN
may be a blend of loss- and gain-related neural activities, possibly re-
flecting the contribution of partly distinct networks. At variance with
this interpretation, other authors contend that the dACC provides the
main (and most plausible) source of both ERP components, and is ac-
tually the only cortical brain region whose activation pattern is con-
sistent with the observed modulation of their amplitude at the scalp
level by valence and expectancy concurrently (Martin et al., 2009).
Thus, a consensus about the neural generators of this FB-based ERP
signal is currently lacking, and other potential sources have been put
forward as well (among others, the ventral rostral anterior and pos-
terior cingulate cortex; Luu et al., 2003; Nieuwenhuis et al., 2005).

Whereas the standard approach in ERP research consists of mea-
suring the amplitude (and/or latency) of either the FRN or RewP at a
few electrode positions, it usually falls short of confirming or dis-
confirming one of these competing assumptions, nonetheless. Using a
standard ERP approach, it remains indeed impossible to confirm di-
rectly whether systematic changes in the amplitude of the FRN com-
ponent occurs following local changes within the dACC with outcome
valence and reward expectancy, or alternatively, another reward-re-
lated and non-overlapping component blurs this effect. To address this
question, the standard ERP analysis can be supplemented by an ad-
vanced topographic ERP mapping analysis informing about the actual
expression of the scalp configuration in the time range of the FRN and
RewP (Murray et al., 2008; Pourtois et al., 2008). Furthermore, possible
neural generators giving rise to them can be estimated with appropriate
source localization methods. However, caution is needed when inter-
preting EEG source estimations. Converging evidence obtained when
crossing different imaging techniques (such as EEG and fMRI for ex-
ample) could eventually help validate and confirm localization results
based on EEG only, as performed here.

Following standard practice (Keil et al., 2014), an ERP component is
usually defined not only by its polarity, amplitude and latency, but also
by its actual topography and neural generators. Topography refers here
to the actual spatial configuration of the electric field at the time where
the ERP component of interest, here FRN and RewP, is best expressed at
the scalp level, including all channels available concurrently. Note-
worthy, changes in the topography necessarily denote changes in the
underlying configuration of brain generators (Lehmann and Skrandies,
1980; Vaughan, 1982). Accordingly, characterizing ERP components
accurately using complementing topographical evidence provides an
important source of information regarding the actual (dis)similarity
between conditions in terms of underlying brain networks; a level of
analysis that cannot be reached directly when considering only the
amplitude changes occurring at a limited number of electrode positions
(usually Fz or FCz only in the case of the FRN). Further, some of these
local amplitude changes can in principle be confounded or inflated by
more global changes in the topography (and/or global strength) of the
electric field across conditions, challenging the validity of some of the
interpretations made when using a standard ERP analysis only. More-
over, local amplitude measurements at a few electrode positions
strongly depend on the specific reference montage used. By compar-
ison, the actual topography of an ERP component is reference-free
(Murray et al., 2008). Additionally, a clear asset of recent topographical
ERP mapping analyses (Michel and Murray, 2012) is that user/experi-
menter-related biases and priors can be strongly limited, including the
selection of specific time-frames for further statistical analyses. In this
framework, the main topographical components are revealed using a
stringent clustering method that allows to identify the specific time
periods in the ERP signal where they are best expressed. As a result,
there is no need to select a priori specific electrode locations or time-
frames for statistical analyses, decreasing ultimately the likelihood of
type I error (Luck and Gaspelin, 2017).

Surprisingly, to the best of our knowledge, the topography of the
FRN and RewP components have not been scrutinized yet in the ex-
isting ERP literature. For example, it remains currently unclear whether
the FRN and RewP share common topographical variance, or instead,
can clearly be dissociated from one another when considering this
global level of analysis, especially when a high density montage (64
channels or more) is used. Further, possible modulatory effects of re-
ward expectancy on the topography of the FRN and RewP remain also
poorly understood. However, such an analysis has the potential to ad-
dress one of the main theoretical questions raised in the current ERP
literature about these two ERP components and as reviewed here
above: is the negative component (N200) giving rise to the FRN clearly
different (at the topographical level) relative to the RewP? Moreover,
considering the topography as level of analysis can also shed new light
on the actual interplay of feedback outcome with feedback expectancy.

2 Here we refer to “FRN” as the negative deflection elicited by no-reward FB, and to
“RewP” as the positive deflection (or lack of negative one) elicited by reward FB. For ease
of reading, in Methods and Results sections we will refer solely to the scoring method
adopted for quantifying both deflections.
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These questions lie at the basis of the current study.
To address them and inform about reward processing during ex-

ternally-driven PM, we recorded high-density (64 channels) EEG in 44
adult healthy participants while they performed a previously validated
gambling task (Hajcak et al., 2005) where FB outcome (reward vs. no-
reward) and expectancy (low, intermediate of high reward probability)
were manipulated on a trial by trial basis using a factorial design. First,
we carried out a standard ERP analysis and extracted the mean am-
plitude of the FRN and RewP, using and contrasting different scoring
methods available in the literature: peak to peak vs. mean amplitude
measurement. Second and crucially, we ran an advanced topographic
ERP mapping analysis on the exact same average ERP data time-locked
to FB onset, and isolated the dominant topographical components ac-
counting for them, in an unbiased way. For the standard ERP analysis,
we surmised a larger FRN for no-reward compared to reward FB, with
the opposite effect found for the RewP, as well as a possible modulation
of each of these two ERP components by expectancy (i.e., larger am-
plitude for unexpected than expected outcome each time; Walsh and
Anderson, 2012). At the topographical level, we tested the prediction
that the FRN and RewP could lead to partly dissociable spatial config-
urations of the global electric field (i.e., topography), and hence non-
overlapping intracranial generators, as has been suggested before. More
specifically, given that the FRN is usually maximal at fronto-central
scalp locations (for negative/no-reward FB) and was previously related
to the dACC (among others, Gehring and Willoughby, 2002; Miltner
et al., 1997; Yeung et al., 2004; Yu et al., 2011), we conjectured that
topographical ERP variance associated with no-reward could be asso-
ciated with this specific brain region in our study. In comparison, since
positive/reward-related ERP activity during FB processing was pre-
viously linked to activation in more posterior parts of the cingulate
cortex (Cohen et al., 2011; Fouragnan et al., 2015; Nieuwenhuis et al.,
2005), and/or specific regions of the basal ganglia (Foti et al., 2015,
2011), we hypothesized that these regions (especially the posterior
cingulate cortex) could account for the reward-related activity during
feedback processing in our study. Furthermore, we sought to explore
whether these two spatial configurations of the electric field depending
on FB outcome, if clearly dissociable from one another, could show a
similar or instead different sensitivity to FB expectancy.

2. Methods

2.1. Participants

Existing EEG data from two previous (and separate) studies by Paul
and Pourtois (2017 - Experiment 1) and Gheza et al. (submitted –
Experiment 2), where the same gambling task was used, were pooled
together. A total of forty-five undergraduate students from Ghent Uni-
versity (right-handed, with normal or corrected-to-normal vision, and
no history of neurological or psychiatric disorders) were included in the
present study. They all gave written informed consent prior to the start
of the experiment and were compensated about 30€ for their partici-
pation. The study by Paul and Pourtois (2017) had a between-groups
design and involved a mood-induction paradigm. Only the control
group (with a neutral-mood state, 25 participants) from this study and
the whole sample (20 participants) from Gheza et al. (submitted, where
no specific mood induction was used) were merged together. One
participant had to be excluded due to noisy EEG recording. Hence, the
total sample included 44 participants (34 females, age: M= 22.0 years,
SD = 2.6). Both studies were approved by the local ethics committee at
Ghent University. A post hoc power analysis was conducted using
GPower (Faul et al., 2007). The sample size of 44 was used for the
statistical power analyses and the power to detect a small (η2 = 0.01),
medium (η2 = 0.06) or large (η2 = 0.14) effect for the interaction be-
tween valence and expectancy was estimated. The alpha level used for
this analysis was set to 0.05. The post hoc analyses revealed the sta-
tistical power for this study was 0.22 for detecting a small effect, 0.91

for detecting a medium effect size, and exceeded 0.99 for a large effect.
Thus, this sample size was more than adequate to detect a moderate/
large effect, but not a small one.

2.2. Stimuli and task

A previously validated gambling task (Hajcak et al., 2007) was
adapted and administered in both studies. On each and every trial,
participants had to choose one out of four doors by pressing with their
right index finger the corresponding key on the response box. After a
fixation dot (700 ms) this choice was followed by either positive FB
(green “+”), indicating a win, or no-reward FB (red “o”) (1000 ms).
The two studies differed slightly in the amount of monetary reward,
being either 8 cents (Paul and Pourtois, 2017) or 5 cents (Gheza et al.,
submitted). At the beginning of each trial, participants were informed
about reward probability with a visual cue (600 ms), followed by a
fixation dot (1500 ms). This cue was presented in the form of a small
pie chart shown at fixation. Either one, two or three quarters were filled
(black/white) corresponding to a reward probability of 25, 50 or 75%.
A reward probability of 25% indicated that only one door contained the
reward, two doors in the case of 50% reward probability and three
doors for 75% reward probability. Unbeknown to participants, the
outcome was actually only related to these objective probabilities (but
not the actual choices made by them), ending up with a preset winning
of €14.72 (Paul and Pourtois, 2017) or €12.40 (Gheza et al., submitted).
Inter trial interval was fixed and set to 1000 ms. Hence, by crossing the
three possible reward probabilities with the two opposite outcomes, six
trial types were included in a factorial design.3 To ensure participants
paid attention to the cue and outcome, catch trials were randomly in-
terspersed in the trial series. In 24 trials, at the cue offset they were
asked to report their winning chance (“how many doors contain a
prize?”, allowing responses from 1 to 3). In 24 different trials, they were
asked about the expectedness of the outcome at FB offset, and answers
were collected by means of a visual analog scale (VAS) anchored with
“very unexpected” and “very expected”.

All stimuli were shown against a gray homogenous background on a
21-in CRT screen and controlled using E-Prime (V 2.0, Psychology
Software Tools Inc., Sharpsburg, PA).

2.3. Procedure

In both studies, after reading the instructions, participants were first
familiarized with the gambling task using 12 practice trials. The pre-
sentation of the 6 trial types (3 reward probabilities × 2 outcomes) was
randomized, and the same trial type could be presented consecutively.
The main experiment consisted of four blocks each comprising 92 (Exp.
1 – Paul and Pourtois, 2017) or 124 trials (Exp. 2 – Gheza et al., sub-
mitted). After each block, a short break was included and participants
were informed about their current (cumulative) payoff.

In Paul and Pourtois (2017), a total of 368 trials was presented (80
with 50%, 144 with 25% and 144 with 75% reward probability). A
neutral-mood induction procedure was applied before the task and re-
peated after each block to maintain the specific mood state (here
neutral) throughout. In Gheza et al. (submitted), a total of 392 trials
was used (104 with 50%, 144 with 25% and 144 with 75% reward
probability).

2.4. Recording and preprocessing of electrophysiological data

EEG was recorded using a 64-channel Biosemi Active Two system
(http://www.biosemi.com) with four additional electrodes measuring

3 Beside the conditions described above (“regular” trials), the task for Gheza et al.
(submitted) also included “special” trials, that were discarded from the analyses con-
ducted in the present study.
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horizontal and vertical eye movements. EEG was sampled at 512 Hz
and referenced to the Common Mode Sense (CMS) active electrode and
Driven Right Leg (DRL) passive electrode. The EEG was preprocessed
offline with EEGLAB 13.5.4b (Delorme and Makeig, 2004), im-
plemented in Matlab R2012b. A 0.05/35 Hz high/low pass filter was
applied after re-referencing the EEG signal to the averaged mastoids. An
independent component analysis was run on the continuous data to
correct manually for eye artifacts and spatial or temporal dis-
continuities. Individual epochs were extracted from −250 to 750 ms
around the FB onset and a pre-feedback baseline was subtracted (−250
to 0). A semi-automatic artefact correction procedure was applied to
eliminate trials with voltage values exceeding± 90 μV or slow voltage
drifts with a stronger slope than± 90 μV, as well as based on visual
inspection. For each subject separately, artefact-free epochs were
grouped according to the six main experimental conditions: expected,
no-expectations4 and unexpected FB associated with reward (deriving
from 75%, 50%, 25% reward probability trials respectively), or ex-
pected, no-expectations and unexpected FB associated with no-reward
(deriving from 25%, 50%, 75% reward probability trials respectively).
To avoid different signal to noise ratios between conditions, the same
number of trials (randomly sampled) was used for all of them, being
defined subject-wise based on the condition with the lowest trial count.

2.5. Standard peak analysis

2.5.1. FRN: peak to peak
The FRN and RewP were determined peak-to-peak at FCz (FRN-pp)

as the difference between the most negative peak (N200: within
200–350 ms) and the preceding positive peak (P200: within
150–250 ms) assumed as the onset of the (relative) negativity (Holroyd
et al., 2008, 2003).

2.5.2. FRN: mean amplitude
We also used an alternative scoring method for the FRN and RewP

(FRN-m), defined at FCz as the mean amplitude within the 213–263 ms
interval post-feedback onset (i.e. the 50 ms window surrounding the
peak of the N200 for no-reward; Novak and Foti, 2015; see also
Weinberg and Shankman, 2017 for the use of a mean-amplitude ap-
proach in a different time window). This time window and location
were based on the FRN-pp maximal amplitude from the grand average
of no-reward FB trials (merging all three expectancy levels; “collapsed
localizer” approach, see Luck and Gaspelin, 2017).

2.5.3. P2 and N2
Supplementary peak analyses on P200 and N200 components (when

considered separately) were carried out in order to verify their relative
sensitivity to FB expectancy and its interaction with FB valence. In
accordance with the FRN-pp scoring method, P200 was defined as the
maximum positivity occurring within the 150–250 ms interval post FB
onset, while the N200 as the maximum negativity within the
200–350 ms interval post FB onset.

2.6. Topographical ERP mapping analysis (TA)

The dominant topographies accounting for the ERP data set under
scrutiny were extracted using CARTOOL software (Version 3.60; de-
veloped by D. Brunet, Functional Brain Mapping Laboratory, Geneva,
Switzerland). The basic principles of this method have been described
extensively elsewhere (Brunet et al., 2011; Michel et al., 1999; Murray
et al., 2008; Pourtois et al., 2008). In short, it is based on two successive

data analysis steps. First, the dominant topographical maps are isolated
from the grand average ERP data by means of a clustering algorithm
that takes into account the global dissimilarity, i.e. the difference in
terms of spatial configuration between two normalized maps in-
dependent of the global strength of the ERP signal (Lehmann and
Skrandies, 1980). Next, these main and dissociable topographical con-
figurations are fitted back to the individual subject ERP data and a
quantification of their representation across subjects and conditions is
then provided, including the global explained variance (or goodness of
fit), the correlation and the time point of the best fit. Parametric tests
are eventually performed on these variables in order to compare dif-
ferent experimental conditions at the statistical level.

2.6.1. TA: segmentation
First, using a competitive T-AAHC cluster analysis (Topographic -

Atomize and Agglomerate Hierarchical Clustering) (Brunet et al., 2011;
Tibshirani and Walther, 2005) of the entire epoch (i.e. from−250 prior
to and up to 750 ms following feedback onset, corresponding to 512
time frames-TFs at a 512-Hz sampling rate), the dominant topo-
graphical maps were identified. The specific (and default) settings for
the clustering method followed the recommendations implemented in
CARTOOL and were the following. 1) Minimum and maximum number
of clusters were predefined to one and nine, 2) a smoothing kernel
(Besag factor 10), of three TFs was applied, and 3) segments shorter
than three TFs were rejected. The choice of the best segmentation result
was based on an objective meta criterion of 7 criteria proposed pre-
viously (see Charrad et al., 2014) and visual inspection of the results.

2.6.2. TA: fitting
The dominant topographies identified in the preceding step were

then fitted back to the individual averages (n= 6 per subject) to de-
termine their expressions across participants and conditions. As the
focus of the analysis was on reward processing (and expectancy), we
mostly examined possible changes in the topography of the ERP signal
as a function of reward and/or expectancy occurring 200–500 ms post-
feedback onset, in keeping with many previous ERP studies (Foti et al.,
2015; Hajcak et al., 2007; Sambrook and Goslin, 2015; Ullsperger et al.,
2014b). Fitting parameters also followed the recommendations im-
plemented in CARTOOL and included 1) a smoothing kernel (Besag
factor 10) of three TFs and 2) rejection of segments shorter than three
consecutive TFs. The fitting procedure was done as a non-competitive
process to validate that one of the topographic configurations fitted
better than the other one depending on the condition (based on global
explained variance - GEV - and the mean correlation of the map with
the signal). Furthermore, the time course of these topographic maps
could be evaluated, i.e. the TF of the best correlation could be com-
pared between the maps and across conditions. If the last approach
revealed a significant temporal difference between the dominant maps,
the fitting procedure was repeated separately for the different time
windows.

2.7. Source localization

To estimate the configuration of the neural generators underlying
the previously identified reward related topographical maps, a dis-
tributed linear inverse solution was used—namely, standardized low-
resolution brain electromagnetic tomography (sLORETA; Pascual-
Marqui, 2002). sLORETA solutions are computed within a three-shell
spherical head model coregistered to the MNI152 template (Mazziotta
et al., 2001). LORETA estimates the 3-D intracerebral current density
distribution within a 5-mm resolution. The 3-D solution space is re-
stricted to the cortical gray matter and hippocampus. The head model
uses the electric potential field computed with a boundary element
method applied to the MNI152 template (Fuchs et al., 2002). Scalp
electrode coordinates on the MNI brain are derived from the interna-
tional 5% system (Jurcak et al., 2007). The calculation was based on the

4 The no-expectation term refers here to the objective reward probability and not the
subjective expectation or uncertainty. The condition provides equal (objective) prob-
ability of reward or no-reward FB and therefore goes along with the highest uncertainty
regarding feedback outcome during the experiment.
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condition specific averages per subject in the time window of interest
identified in the previous analysis.

2.8. Statistical analysis

At the behavioral level, the subjective ratings related to catch trials
after the FB (probing FB expectation) were first transformed to per-
centages, arbitrarily setting one anchor (‘very unexpected’) to 0 and the
other one (‘very expected’) to 100. These evaluations were considered
to be correct if they fell within a± 25% range around the correct re-
sponse (see Paul and Pourtois, 2017 for a similar procedure). The
amount of correct responses to these catch trials as well as catch trials
corresponding to the cue (probing reward probability) were eventually
reported as percentage of correct responses.

At the ERP level, repeated measures ANOVAs with FB expectancy
(expected, no-expectations, unexpected) and outcome (reward vs. no-
reward) as within-subject factors were performed (individual trial
count, balanced across the six conditions: M = 27.4, SD = 4.3) sepa-
rately for FRN-pp and FRN-m.

At the topographical level, each of the three dependent variables
gained by the fitting procedure (i.e., GEV, mean correlation, TF of best
correlation) was entered in a 2 × 3× 2 repeated measurement ANOVA
with the within-subject factors map configuration (FRN vs. RewP-map),
expectancy (unexpected, no-expectations, expected) and FB valence
(reward vs. no-reward). If the previous analysis based on TF of best
correlation hinted at a potentially interesting difference in the time-
course of the main maps, another ANOVA was run with the same
within-subject factors, but adding a factor “time-window”(early vs.
late).

The inverse-solution results were compared between the two reward
outcomes (reward vs. no-reward) using paired-sample t-tests performed
on the log-transformed data. To reveal potential differences in the in-
verse-solution space through direct statistical comparison, a stringent
nonparametric randomization test was used (relying on 5000 iterations,
see Nichols and Holmes, 2001).

For all analyses, significance alpha cutoff was 0.05.

3. Results

3.1. Behavioral results

The accuracy for the cue (Mcorrect = 88.1%, SD = 8.0) and for the
outcome evaluation (Mcorrect = 60.7%, SD = 25.3), as inferred from
the catch trials, were high and well above chance level, suggesting that
participants correctly monitored reward probability (based on the vi-
sual cue) and outcome (based on the feedback).

3.2. ERP results

3.2.1. FRN: peak to peak
The analysis performed on the FRN-pp amplitudes showed a sig-

nificant main effect of FB valence (F(1, 43) = 16.78, p < 0.001,
η2 = 0.281) and an interaction between FB valence and FB expectancy
(F(2, 86) = 12.49, p < 0.001, η2 = 0.225). The FRN component was
larger (more negative) for no-reward compared to reward FB
(Mreward = −5.08, SE = 0.30, Mno-reward = −6.55, SE= 0.36). The
multivariate simple effect of FB expectancy was significant for no-re-
ward (F(2, 42) = 7.06, p = 0.002, η2 = 0.252), but not for reward FB
(F(2, 42) = 1.65, p = 0.203, η2 = 0.073), confirming its sensitivity to
RPE, when scored peak to peak5 (see Fig. 1).

3.2.2. FRN: mean amplitude
The analysis performed on the FRN-m amplitudes showed a sig-

nificant main effect of FB valence only (F(1, 43) = 62.39, p < 0.001,
η2 = 0.592), without a significant interaction between FB valence and
FB expectancy, however (F(2, 86) = 2.19, p= 0.118, η2 = 0.048). The
FRN-m was larger (more negative) for no-reward compared to reward
FB (Mreward = 2.42, SE= 0.51, Mno-reward = −0.41, SE = 0.44). These
results indicated that, on this critical time window and fronto-central
channel, the FRN, when scored using a stringent mean amplitude
measurement, was sensitive to FB valence only (reward being present or
absent), without any significant modulation due to FB expectancy (see
Fig. 1). Hence, these results suggest a qualitatively different outcome at
the FRN level depending on the specific scoring method used.

3.2.3. P2 and N2
Repeated measure ANOVAs were run on the two components se-

parately, with FB valence and FB expectancy used as within subject
factors. The analysis for the P200 revealed significant main effects of
Valence (F(1, 43) = 9.23, p = 0.004, η2 = 0.177) and Expectancy (F(2,
86) = 4.49, p = 0.014, η2 = 0.095). The analysis on the N200 revealed
a significant main effect of Valence (F(1, 43) = 47.64, p < 0.001,
η2 = 0.526) and crucially, a significant interaction between Valence
and Expectancy (F(2, 86) = 6.45, p = 0.002, η2 = 0.130). Thus, al-
though the FRN-pp scoring method could potentially inflate the effect
of Expectancy driven by the P200 (as opposed to N200) component, it is
clear from the N200 only analysis that this deflection alone was sig-
nificantly modulated by both factors concurrently in our study.

3.3. Topographic analysis

3.3.1. Segmentation
Following the meta-criterion, a solution with sixteen different

dominant maps was found to explain the ERP data set the best. The
solution explained 93.71% of the variance, see Fig. 2. During the time
window corresponding to the FRN and RewP, two different dominant
maps were clearly evidenced. One map, sharing similarities with the
FRN ERP component, showed a fronto-central negativity and started at
a similar time point (i.e. 217 ms) regardless of feedback expectancy's
level, but only for negative FB. Moreover this distinctive map was im-
mediately followed by a different map showing a broader central po-
sitivity. This RewP-map was present and lasted until the same time
point for all six FB types (i.e. 386 ms). The spatial correlation between
these two maps was 0.84.

3.3.2. Fitting
The extracted the GEV and the mean correlation, provided by the

fitting of the two dominant maps in the time window of interest
(217–386 ms) revealed a significant main effect of map (F(1,
43) ≥ 9.04, p≤ 0.005, η2 = 0.17). Both variables showed a significant
interaction between FB valence and map (F(1, 43) ≥ 34.47,
p < 0.001, η2 ≥ 0.45) and FB expectancy and map (F(2, 86) ≥ 7.86,

5 In order to rule out that these neurophysiological effects were different between the
two samples, we used a Bayesian factor analysis which is suited for estimating the amount
of evidence in favor or against the null hypothesis (Rouder et al., 2017). More specifically,
the data from the FRN-pp method was examined in a Bayesian repeated measure ANOVA
in which the factors were FB outcome (reward or no-reward), FB expectancy (expected,

(footnote continued)
no-expectations, or unexpected) and Group (Exp 1 or Exp 2). We used the JASP software
package (JASP Team, 2017 - version 0.8.1.2) with default prior settings. First, the like-
lihood for each alternative models (derived from the combination of the 3 factors) was
tested against a Null model. The models that best explained the variance were the main
effect of Outcome, followed by the one including the two main effect of Expectancy and
Outcome and their interaction (BF10 for Outcome = 40,266, BF10 for Expectancy
+ Outcome + Expectancy ∗ Outcome = 9031). In order to rule out the Group factor
effects, we then included the model terms Expectancy, Outcome and Expectancy * Out-
come (i.e. flagged as Nuisance) in every model (including the Null model) and we looked
at the BF01 (likelihood of the Null model over the others). The Null model (assumed
probability of 1) was 6.8 times more likely to be true compared to the model including the
main effect of Group (BF10 = 0.145), and much more likely compared to any other
model that included an interaction with Group (BF10 < 0.068). These results provide
moderate to very strong evidence for the absence of a Group effect on these FRN-pp
results.
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Fig. 1. (A) Grand average ERP waveforms computed at FCz for reward and no-reward separately, collapsing across the three levels of FB expectation each time. A conspicuous N200
(giving rise to the FRN component) was elicited for no-reward FB, compared to reward FB. The diamond symbol refers to the preceding P200 (see Fig. 1D – left panel for analysis of this
component only). The dot symbol refers to the N200 proper (see Fig. 1D – right panel for analysis of this component only). The small horizontal black line depicts the fixed interval used
when the FRN is measured as mean amplitude (see Fig. 1E). The FRN was analyzed using either peak to peak (FRN-pp, using the preceding P200 as initial peak – baseline, see Fig. 1C) or
as a mean ERP activity (FRN-m, see Fig. 1E). (B) Grand average ERP waveforms computed at FCz for all six main conditions. At the N200 level, FB valence interacted with FB expectancy,
whereby the N200 was the largest for unexpected negative FB. (C) Mean amplitudes of the FRN when computed peak to peak, showing a significant interaction between FB valence and
FB expectancy. (D) Mean amplitudes for P200 (left panel) and N200 (right panel) alone. (E) Mean amplitudes of the FRN when computed using a mean amplitude measurement, showing
a main effect of FB valence only. The error bar corresponds to 1 standard error of the mean.

Fig. 2. (A) Topographies (voltage maps) of the main ERP activities of interest (irrespective of expectancy), showing the RewP topography (left inset) and the FRN topography (right inset).
The circle superimposed of the topographies corresponds to FCz electrode location. Each map is computed as the mean ERP activity during a 50 ms time interval around the N200 peak
elicited by no-reward (see Fig. 1A). (B) Outcome of the spatio-temporal segmentation of the grand average ERP data (with the six main experimental conditions considered, and showing
the entire epoch starting 250 ms prior to and ending 750 ms after feedback onset). A solution with 16 different topographical maps (where only 7 are actually depicted here) was found to
explain 93.71% of the total variance. During the time interval corresponding to the FRN/RewP components, two dissociable activities were evidenced based on FB valence. These two
maps had different properties, including a longer duration for the reward-related one, and showed different sensitivity to FB expectancy (see Results section and Fig. 3 for results after
back fitting to individual subject ERP data).
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p ≤ 0.001, η2 ≥ 0.16), see Fig. 3. While the RewP-map explained more
variance and showed a higher mean correlation for reward than no-
reward FB (Mreward-meanCorr = 0.70, SE = 0.02, Mno-reward-mean-

Corr = 0.63, SE = 0.02, p ≤ 0.002), the FRN map showed only a non-
significant trend to fit better with the no-reward compared to the re-
ward FB (Mreward-meanCorr = 0.57, SE = 0.03, Mno-reward-mean-

Corr = 0.60, SE = 0.03, p ≥ 0.25). Regarding the GEV, both maps
seemed to be sensitive to the expectancy manipulation as well. More
variance was explained for the unexpected than the expected condition
(FRN-map: Munexpected = 0.08, SE = 0.006, Mexpected = 0.06,
SE = 0.005, p ≤ 0.05). Especially the positivity map showed a steeper
increase with unexpectedness (positivity map: Munexpected = 0.10,
SE = 0.006, Mexpected = 0.07, SE = 0.004, p < 0.001). For the mean
correlation, the RewP-map showed a similar pattern
(Munexpected = 0.68, SE= 0.02, Mexpected = 0.65, SE = 0.02,
p < 0.015), while the FRN-map did not differentiate between levels of
expectancy (Munexpected = 0.58, SE = 0.03, Mexpected = 0.58,
SE = 0.03, p ≥ 0.34).

Importantly the TF of the best correlation for each map within this
time large segment showed again a significant interaction between map
and FB valence (F(1, 43) = 8.31, p = 0.006, η2 = 0.16), indicating that
for reward FB, both maps fitted equally well at 306 ms (MFRN-

map = 305 ms, SE = 7.69, MRewP-map = 307 ms, SE = 6.04, p = 0.81),
while for no-reward FB, the FRN-map fitted the best much earlier than
the RewP-map (MFRN-map = 277 ms, SE = 6.97, MRewP-map = 318 ms,
SE = 5.79, p < 0.001). This result clearly indicated that the initial
time window of interest (217–386 ms) was probably too broad and

likely encompassed two dissociable processes in terms of spatial-tem-
poral dynamic. To corroborate this assumption at the statistical level,
we repeated the fitting within two short non-overlapping time windows
lasting for 40 ms centered around 277 and 318 ms, respectively. The
repeated measures ANOVA on the GEV values revealed, besides several
significant main effects, two significant three way interactions between
time-window, map and FB valence (F(1, 43) = 66.37, p < 0.001,
η2 = 0.61) and time-window, map and FB expectancy (F(2, 86) = 5.01,
p = 0.009, η2 = 0.10), see Fig. 4. Whereas the FRN-map fitted the best
in the early time window for no-reward FB (Mno-reward-early = 0.07,
SE = 0.007, Mno-reward-late = 0.06, SE = 0.006, p ≥ 0.139), the RewP-
map fitted the best for reward FB in the later time window (Mreward-

early = 0.07, SE = 0.006, Mreward-late = 0.10, SE = 0.006, p ≤ 0.059).
Furthermore, while the FRN-map did not vary with expectancy for none
of the two time windows (Munexpected = 0.07, SE= 0.006,
Mexpected = 0.06, SE = 0.006, p ≥ 0.139), the positivity map showed
this effect, especially in the later time window (Munexpected-late = 0.11,
SE = 0.006, Mexpected-late = 0.08, SE = 0.005, p ≤ 0.003). Using the
mean correlation as fitting parameter, as opposed to the GEV, led to a
similar statistical outcome.

3.4. Source localization

The statistical comparison in the inverse-solution space between
reward an no-reward within the time window of the FRN- and RewP-
map (217–386 ms) revealed two non-overlapping suprathreshold (t
value > 4.13, corrected for multiple comparisons) clusters showing

Fig. 3. (A-F) Results obtained after fitting back the two dominant maps (FRN and RewP, regardless of expectancy) identified during the clustering step (see Fig. 2B) during the
217–386 ms time interval following FB onset to individual subject ERP data, separately for the three main dependent variables used in this analysis: global explained variance (GEV),
mean correlation and time-frame (TF) of best correlation. The error bar corresponds to 1 standard error of the mean. For each of them, a significant interaction effect between valence and
map was found (A,B), explained by the generation of a reward-specific map for positive feedback, except for the TF of best correlation where a significant earlier time-course was found
for the FRN-related map for negative feedback compared to the RewP map (C). (D-E-F) Results obtained after fitting showing differential effect of expectancy on the behavior of the two
main maps. While the FRN-related map was weakly modulated by levels of expectancy, such an effect was clearly evidenced for the RewP map that showed a monotonic increase (in GEV
or mean correlation) with increasing unexpectedness.
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opposing reward-related effects, see Fig. 5. One cluster, being more
active for no-reward than reward FB, was located within the dACC,
including Brodmann area (BA) 32; (maximum at 15x, 25y, 40z, t(43)
= −5.31, p < 0.001) and spreading to adjacent frontal areas, in-
cluding BAs 6, 8 and 9. The other non-overlapping cluster showed the
opposite pattern (more active for reward than no-reward FB) and was
located in the posterior cingulate cortex (PCC; BA 23; maximum at
−5x, −60y, 15z, t(43) = 5.85, p < 0.001), extending to adjacent
(medial) parietal regions (such as the Precuneus or retrosplenial cortex;
BA 31), as well as more ventrally to the posterior part of the Para-
hippocampal gyrus (BA 27). It also spread to the posterior part of the
left insula (BA 13; max. at −30x, −40y, 20z, t(43) = 4.89,
p < 0.001).

4. Discussion

RPE signals recorded at the electrophysiological level during PM are

thought to provide an integration of expectancy and valence of the
outcome, such that a differential response to rewarding vs non-re-
warding outcome increases as a function of its unpredictability
(Holroyd and Coles, 2002; Schultz et al., 1997). If the evidence for a
mismatch between expectation and outcome is motor based (e.g., clear
response error), then such an effect can be tracked at the level of re-
sponse-locked ERPs, such as the ERN. However, if the evidence cannot
be computed at the response level (e.g., during gambling or probabil-
istic learning), then FB provides the main source of information to es-
timate RPE, with neurophysiological effects visible at the level of the
FRN/RewP. The present study focussed on this latter effect. More spe-
cifically, we aimed to characterize the topographical properties of the
FRN component, when compared to the RewP, in order to assess
whether they share common or instead dissociable topographic var-
iance and neural generators. Importantly, we could compare the out-
come of this data-driven method (taking into account all electrodes and
time-frames) to two standard ERP scoring methods available in the

Fig. 4. Fitting results (GEV only) shown separately for
the early (left column) and late time-window (right
column) identified by the main analysis (see Results
section for details). Whereas the FRN-map discriminated
better no-reward from reward FB during the early time
interval (A), the RewP-map discriminated better reward
from no-reward FB during the later time interval (B). (C)
The FRN-map did not vary with expectancy (in none of
the two time intervals). (D) By comparison, the RewP-
map varied with expectancy, especially during the later
time interval. The error bar corresponds to 1 standard
error of the mean.

Fig. 5. Source localization results. Hot
colors provide activations (corrected for
multiple comparisons, see Results section
for details) for the contrast between reward
and no-reward FB, while cold colors provide
suprathreshold activations for the reverse
contrast. These statistical maps were gen-
erated for the mean ERP activity generated
within the 217–386 ms time interval fol-
lowing FB onset. No-reward compared to
reward yielded activation in the dACC (BA
32; see right inset), spreading to nearby
frontal areas (BAs 6, 8, and 9). Conversely,
reward compared to no-reward led to acti-
vations in the PPC (BA 23; see left inset),
spreading to parietal and more ventral re-
gions, including the Precuneus and
Parahippocampal gyrus (BAs 23, 27, 29, 30,

13, and 18). It also extended to the left posterior insula (BA 13).
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literature, focusing on a circumscribed time-window and FCz electrode
only.

To this aim, 44 participants carried out a previously used gambling
task (Hajcak et al., 2007; Paul and Pourtois, 2017), where FB valence
and expectancy were manipulated on a trial-by-trial basis, while 64-
channels EEG was recorded concurrently. This enabled us to estimate
the contribution of these two independent variables to systematic
changes in the ERP signal following FB onset, when it corresponded
either to amplitude modulations recorded at FCz only, or alternatively,
when considering the spatial configuration of the entire electric field
(i.e., topography). A number of new results emerge from the current
study. (i) When comparing two different, albeit standard, scoring
methods for the FRN in the existing ERP literature, our results show
that this component was reliably modulated by FB valence and ex-
pectancy when using a peak to peak measurement only (FRN-pp, i.e.,
measuring peak amplitude of the N200 relative to the preceding P200
at FCz component). Importantly, a similar outcome was reported when
measuring the N200 alone. By comparison, when we used a more
stringent mean amplitude measurement at the same lead (FCz) (FRN-m,
i.e., measuring FRN as a mean ERP activity spanning from 213 to
263 ms interval centered around the N200 peak), it was modulated by
valence without significant change by expectancy, suggesting in turn a
dissociation between them. (ii) These somewhat inconsistent results
were supplemented with a topographical pattern analysis that strongly
reduced the number of priors in terms of location and latency for
identifying reward-related effects following FB onset, and possible in-
teractions with expectancy. This analysis unambiguously showed the
existence of two dissociable topographies during the time-interval
corresponding to the FRN and RewP. A main topography characterized
by a short-lasting prefrontal negative component was generated rela-
tively early after negative FB onset and was somehow independent from
its expectancy. Another one showed a broad positivity at more central
and parietal sites during the same early time interval, and was gener-
ated in response to reward. Crucially, this latter reward-related topo-
graphy lasted longer and best represented the variance of the ERP
signal in a later time window, where it also varied systematically as a
function of reward expectancy, accounting for more variance for un-
expected than expected positive FB, in agreement with the tenets of the
dominant RPE framework (Schultz, 2013). Given these specific elec-
trophysiological properties and opposing sensitivity to FB valence, we
tentatively linked the first one to the FRN and the second one to the
RewP, when corresponding to local amplitude variations of specific
deflections measured at a single scalp channel. Because different to-
pographies necessarily denote non-overlapping intracranial generators
(Lehmann and Skrandies, 1980; Michel and Murray, 2012; Vaughan,
1982), we estimated their sources using a linear inverse solution al-
gorithm (sLoreta, see Pascual-Marqui, 2002). While the FRN-compa-
tible topographical activity had a main cluster within the dACC, the
RewP-one was source localized to a distributed and extended network,
comprising primarily the PCC. Here below, we discuss the implications
of these new results, and eventually formulate some recommendations
for the definition and use of feedback-based reward-related ERP ac-
tivities in future studies.

At FCz scalp location, independently of the scoring method adopted
and actual definition used for the ERP component of interest (either
local amplitude changes or topography), we consistently found across
these different methods used that the FRN amplitude varied reliably
with valence, i.e. it was consistently larger for no-reward than reward
FB, while conversely, the RewP amplitude was systematically larger for
reward than no-reward FB. Noteworthy, the FRN component was sen-
sitive to FB expectancy only when using a peak to peak analysis (FRN-
pp). Thus the peak to peak scoring method was the only one with which
the FRN was found to be coherent with the generation of a dopamine-
dependent RPE signal (Holroyd et al., 2003; Holroyd and Coles, 2002;
Schultz et al., 1997; Ullsperger et al., 2014b). No such modulation was
found for the RewP, no matter which ERP scoring method was actually

adopted. In light of the existing debate in the ERP literature about the
sensitivity of the FRN, or instead RewP to FB expectancy (bearing in
mind that these two hypotheses are not necessarily mutually exclusive
and are both consistent with the original FRN-RL theory; see Holroyd
et al., 2008; San Martín, 2012), our results lend support to the classical
FRN hypothesis (Holroyd and Coles, 2002; Ullsperger et al., 2014b;
Walsh and Anderson, 2012).

When the FRN was scored as mean amplitude around the peak of
the N200 (FRN-m), no reliable modulation by FB expectancy was found.
This inconsistency across the two scoring methods might be explained
by several factors. On one hand, the peak to peak measurement may
have artificially inflated the component's amplitude due to noise in the
data (Luck and Gaspelin, 2017). On the other, scoring the FRN using the
mean amplitude computed for a relatively long and pre-defined time
window, albeit being a more conservative approach that is less sensitive
to noise in the measurement, might have overshadowed an effect of
expectancy due to inter-individual variability in the latency (and
morphology) of the P200-N200-P300 complex, and/or to the possible
temporal overlap of the N200 with the preceding P200 and/or the
following P300. The N200 is usually flanked by these two positive
components, which usually do show amplitude modulations with sti-
mulus frequency, and thus expectancy (Donchin and Coles, 1988;
Polich et al., 1996), although with an affect going in the opposite di-
rection compared to the N200. Neglecting these features of the ERP
signal can in turn potentially smear amplitude effects which are small in
size, such as the expectancy effect on the FRN. Indeed, the peak to peak
approach (FRN-pp, where preceding P200 is used as baseline peak for
N200 peak measurement) was put forward as an alternative scoring
method to control for this confounding effect (Holroyd et al., 2003;
Sallet et al., 2013). Notably, by further exploring amplitude modula-
tions brought about by FB expectancy (and valence) for each deflection
separately (i.e., P200 and N200), we could confirm that the significant
interaction effect between FB valence and FB expectancy at the N200
level (hence FRN) was not merely resulting from the preceding P200
(see Results). As a rule of thumb, depending on the experimenter's goal
and research interest, one of the two scoring methods could be pre-
ferred above the other one. For instance, if the focus is on reward itself,
the use of the FRN-m appears warranted. By comparison, if more subtle
influences of expectancy are explored at the FB (and FRN) level, then a
FRN-pp scoring method appears more appropriate than the FRN-m.
However, in light of these slight discrepancies between the different
scoring methods used, and for comparison purposes with previous work
in the literature, it appears important to report and compare the out-
come of these different scoring methods when it comes to assessing the
sensitivity of an ERP component, like the FRN or RewP, to FB valence
and expectancy.

Although these classical peak analyses informed about the complex
interplay between reward and expectancy during feedback-based PM,
yet they are necessarily based on local amplitude variations only (here
measured at FCz), and as such, they could therefore potentially over-
look more global changes in the ERP signal occurring with these two
factors, including topographical alterations. To explore this possibility,
we supplemented these analyses with a topographical ERP mapping
analysis that considered the FB-locked ERP signal when measured at all
(64) electrodes concurrently, and during a large time interval following
FB onset (hence, not restricted to local peaks or maxima only), reducing
in turn strongly the number of priors. This analysis confirmed the
presence of a clear topographical change depending on actual FB out-
come during the time interval usually associated with the FRN or RewP.
Whereas a main topography shared many similarities with the FRN
component (no-reward dominance), the other competing spatial con-
figuration of the electric field closely resembled what is usually referred
to as RewP in the existing ERP literature and showed enhanced activity
for reward. Moreover, source estimation using sLoreta confirmed the
presence of two non-overlapping networks accounting for these two
dissociable maps. As predicted by many models and earlier ERP studies
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(Bush et al., 2000; Fouragnan et al., 2015; Gehring and Willoughby,
2002; Miltner et al., 1997; Shackman et al., 2011; Ullsperger et al.,
2014b), we found that the dACC provided the main intracranial gen-
erator of this FRN-compatible map. In comparison, the RewP activity
was source localized to more posterior regions, including the PPC, an
area known to be involved in reward processing (Knutson et al., 2001;
Liu et al., 2011; Luu et al., 2003; Nieuwenhuis et al., 2005). Even
though some caution is needed in the interpretation of these source
localization results (as they correspond to imperfect mathematical re-
constructions of the intracranial sources), this dissociation along the
cingulum depending on FB valence is not odd, but very much in line
with the taxonomy of functionally-distinct sub-regions composing it, as
previously put forward by Vogt (2005). In this framework, the anterior
midcingulate cortex (aMCC) is linked with the processing of negative
emotions (and the need for cognitive control, see Shackman et al.,
2011), especially fear, anxiety, and even pain. Conversely, the PCC is
assumed to play a predominant role in attention control, especially in
orienting to targets that are potentially of high motivational value for
the individual, in integrating the history of rewards previously experi-
enced, as well as in the assessment of personal relevance of incoming
(emotional) information, and controlling the balance between internal
and external attention (Leech and Sharp, 2014). Using this neuro-ana-
tomical framework, we could thus conjecture that the stronger aMCC
response to no-reward FB in our study might reflect an (whole or none)
alarm or alert signal in case the outcome turns out to be relatively
“negative” (no-reward) (Shackman et al., 2011). In comparison, the
stronger PCC activation to reward FB seems consistent with an atten-
tional orienting effect towards an approach-related or motivationally
significant event for the participant, namely getting a small financial
reward after gambling in the present case. Similar interpretations of
related findings have been drawn in the context of error monitoring
(Paul et al., 2017) and reinforcement learning (Fouragnan et al., 2015).

Turning to the possible changes of these global ERP activities with
FB expectancy, our topographical analysis additionally showed a
striking modulation that none of the two classical ERP analyses (using
FCz only) could actually reveal. Not only was FB valence clearly
modulating the expression of the global electric field, but FB expectancy
influenced its expression as well and in a condition-specific manner. As
our analysis revealed (see Fig. 2), the RewP-related map appeared to be
the default ERP activity somehow in this long interval (from 210 to
380 ms following FB onset), progressively building up across this spe-
cific interval and reaching its maximum at ~320 ms following FB onset.
No-reward outcome turned out to “break up” this default processing at
an early latency (~280 ms following FB onset), with the generation of a
unique and distinctive topography (being also short-lived), namely the
FRN map. This result supports the idea that in case of a “negative” event
(here corresponding to the lack of reward), a phasic negative ERP ac-
tivity similar to the N200-component (Heydari and Holroyd, 2016;
Shahnazian and Holroyd, 2017) is elicited, which temporarily overrides
the standard (reward-driven) ERP response. Although remaining largely
speculative, this break-up effect might be caused by a phasic dip or
transient pausing in dopaminergic firing, as the RL-theory would sug-
gest (Fiorillo et al., 2003; Schultz, 2013; Warren and Holroyd, 2012). At
variance with this interpretation, a positivity associated with better
than expected positive outcome (Proudfit, 2015) could have been
overridden by a more generic brain response to salient events in general
(Holroyd et al., 2008; Talmi et al., 2013). Importantly, in line with the
FRN-m analysis, this FRN-compatible topographical map did not show
however a systematic modulation (in explained variance) with ex-
pectancy. We may speculate that both the FRN-m and the topographic
mapping for the FRN map overlook a phasic, short-lived, local mod-
ulation of expectancy that only the FRN-pp and the N200 peak analyses
were able to capture. Such a modulation was well evidenced in our
topographic ERP mapping analysis, but for the RewP-related topo-
graphy and at a later time point, however. Accordingly, these topo-
graphical results inform about the actual spatio-temporal dynamic of

reward processing, suggesting that early on following FB onset, FB
valence mostly influenced the expression of the ERP signal (irrespective
of expectancy). In the present case, this FB valence effect was char-
acterized by the transient blocking of the (normal) reward-related ac-
tivity and replacement for a short period of time by another, negative or
loss-related, ERP activity sharing many similarities with the FRN. Be-
cause our ERP results suggest the existence of two separate and dis-
sociable networks depending on actual FB valence (yet having both an
early time-course following FB onset), they clearly speak against the use
of difference waves, where a new and undefined ERP activity would
likely be created as a result of this transformation, in case no-reward
would be subtracted from reward FB for example. Such an approach,
although possibly reducing the number of factors/variables included in
the statistical analysis (Luck and Gaspelin, 2017), would nonetheless
overlook and mitigate the existence of independent sources and effects
that each contributes to both (local) amplitude as well as (global) to-
pographical changes in the ERP signal following FB onset. Hence, a
clear methodological implication of our new ERP results is that the use
of difference waves should not be recommended as it could blur or
smear important differences between the processing of reward vs. no-
reward outcome during PM.

As mentioned here above, we succeeded to evidence systematic
modulations of the feedback-locked ERP signal with expectancy with
the elected topographic ERP mapping analysis. They were found for the
RewP-related map exclusively, and became stable at the statistical level
when considering a later time interval following FB onset (compared to
the FRN map). Interestingly, the PCC and adjacent areas which are
thought to give rise to this ERP activity, has previously been shown to
be involved in detecting novel, or unpredicted events (Gabriel et al.,
2002; Mccoy et al., 2003). Moreover, earlier ERP studies already clearly
showed that during a comparable time window following FB onset, the
amplitude of the RewP was modulated by expectancy and hence RPE
(Sambrook and Goslin, 2015; Talmi et al., 2012). Accordingly, given
this clear modulation of the ERP signal with expectancy for the RewP-
related map, our novel results lend indirect support to earlier studies
and models available in the ERP literature that posited that effects of
expectancy on the FRN component might very well be driven in part by
responses to unexpected reward as well (Holroyd et al., 2008; Walsh
and Anderson, 2012). Yet, this effect was found when considering the
topography only, and a relatively late time interval (i.e., 298–338 ms
following FB onset). Although we failed to find evidence of a systematic
change in the explained variance of the FRN-compatible topography
with FB expectancy, some cautious is needed in the interpretation of
this “null” result. For example, it remains to be tested whether using
monetary loss or punishment for the no-reward outcome might not
yield stronger modulations of the FRN-compatible topography with
expectancy, as this manipulation would necessarily increase the sal-
ience of the no-reward outcome (Esber and Haselgrove, 2011). Ac-
cordingly, whether or not the FRN-compatible topography varies (in
explained variance) with expectancy awaits additional empirical work
where other contrasts at the outcome level should be used and com-
pared systematically using similar ERP methods (including loss-related
ones and hence the activation of a defensive motivational system;
Hajcak and Foti, 2008). Notwithstanding this caveat, our new topo-
graphical ERP results are important because they clearly suggest that
the processing of FB valence during gambling may obey a two-stage
process: first FB valence is evaluated (with no-reward interfering with
the default reward-related ERP activity apparently), before a strong
expectancy effect comes into play during a later stage and dynamically
shapes reward processing, selectively. Presumably, this modulation
might reflect the assignment of a different motivational value to the
reward-related FB depending on its expectancy. This interpretation
aligns well with recent neurophysiological evidence that reveals a
specific temporal sequence during evaluative FB processing (Fouragnan
et al., 2015; Philiastides et al., 2010): the early (around 220 ms post FB
onset) categorical evaluation of the outcome (i.e. valence) is later
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followed (around 300 ms) by the processing of its actual deviation re-
lative to the expectation (i.e. salience). More generally, such rapid and
fine-grained changes in the actual spatio-temporal dynamic of reward
processing during PM could hardly be captured by means of a standard
ERP data analysis. Hence, we contend that future ERP studies focused
on reward processing and PM should better incorporate this important
feature of any ERP component (FRN, RewP, P200, P300 or N200),
namely the topography, as it carries relevant information about the
complex interplay between FB valence and expectancy. This approach
might also help to revise or amend some of the current models available
in the field that directly use these specific ERP components to generate
testable predictions about the neurophysiology of reward processing
and PM (Ullsperger et al., 2014b).

Despite its apparent strengths and added value, some limitations
related to this topographic ERP mapping analysis warrant comment.
Because this approach is based on an estimation (and clustering) of the
dissimilarity in terms of spatial configuration of the electric field across
successive TFs, it is not suited to reveal the contribution of putative
independent components/sources that would be active and compete
with one another at the exact same time, for which an ICA or PCA (Foti
et al., 2015, 2011; Proudfit, 2015) should preferably be used for ex-
ample (Eichele et al., 2010). Previously published findings (Holroyd
et al., 2008; Proudfit, 2015) suggested that the ERP responses to reward
and loss mostly differ by means of a positivity that is unique to reward
trials, as opposed to a negativity to no-reward ones. By comparison, the
outcome of our ERP topographic mapping analysis suggests the pre-
sence of a phasic FRN-map (characterized by a fronto-central nega-
tivity) generated in an early time window following no-reward (around
277 ms), which seems to overlap and interfere with a longer-lasting
reward-related activity (characterized by a positivity showing a centro-
parietal scalp distribution). Tentatively, this discrepancy between our
current and these previous ERP studies could be related to the above-
mentioned methodological factors, as well as the actual incentive used
to guide performance monitoring (being sometimes either primarily
reward-related or instead loss-related). Presumably, for these reasons
our topographic ERP mapping analysis failed to reveal a specific (short-
lived) topography associated with reward outcome that would mainly
be characterized by a central positivity culminating when the N200 (no-
reward) reached its maximum amplitude, as previously suggested for
the RewP ERP component (Novak and Foti, 2015; Proudfit, 2015). The
RewP topographical map revealed in our study showed instead a
broader (central and posterior parietal) and longer-lasting positivity
that presumably partly overlapped with the P300 component. There-
fore, it remains to determine to which extent the RewP map found in
our study corresponds to the RewP ERP component exclusively, or also
encompasses the P300 component. Last, it would also be beneficial in
future studies to assess whether these two different topographies
identified here may also be related somehow to different variations in
the spectral content of the EEG/ERP, as recently reward processing has
been associated with systematic changes in the power of either theta or
delta oscillations (Bernat and Nelson, 2008; Cohen et al., 2007; Marco-
Pallares et al., 2008). Considering the ERP results obtained with the
different scoring methods used in our study (FRN-m, FRN-pp, or N2
peak) and some dissociations found between them, it appears challen-
ging to relate complex cognitive processes, such as expectancy or re-
ward, to single and temporal-specific ERP deflection, such as the P2 or
N2. In this context, a better understanding of the actual neurophy-
siology of these complex cognitive processes could probably be
achieved by supplementing classical ERP analyses with time/frequency
methods that can inform about the actual spectral content of the P2-N2-
P3 complex, its modulation by reward and expectancy (Cavanagh et al.,
2012, 2010; Cohen et al., 2007; Cohen and Donner, 2013; Mas-herrero
and Marco-pallarés, 2014; Paul and Pourtois, 2017), and the relative
role of phase locked (captured by ERPs) and non-phase locked oscilla-
tory activity in explaining these effects (see also Cohen and Donner,
2013; Hajihosseini and Holroyd, 2013).

To sum up, the present ERP results advance our understanding of
reward processing during gambling (in healthy adult participants) and
more specifically how reward is actually shaped by expectancy when
the topography, as opposed to amplitude measurements performed at a
single scalp location, is carefully considered and properly analyzed. Our
new results lend support to the existence of two – spatially and tem-
porally – dissociable networks during FB processing. One is driven by
no-reward and comprises the dACC, meeting many of the electro-
physiological criteria used previously to define the FRN component in
the extant ERP literature. The other one competes with the first one,
and is primarily reward-related (as well as sensitive to expectancy),
sharing in turn many similarities with the RewP. Since abnormal re-
ward processing (and anhedonia) is a cardinal diagnostic feature of
several affective disorders, such as major depression, addiction, schi-
zophrenia or pathological gambling, the topographic ERP mapping
analysis performed in this study, and meant to explore thoroughly the
spatio-temporal dynamic of reward processing during PM, could be
used more systematically in the future in clinical settings to elucidate
which component of reward processing (in relation to expectancy)
could be impaired in these patients, and whether depending on the
actual affective disorder being diagnosed, some specific (and stable)
topographical ERP anomalies could eventually be evidenced.
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