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A B S T R A C T

We examined the processing capacity and the role of emotion variance in ensemble representation for multiple
facial expressions shown concurrently. A standard set size manipulation was used, whereby the sets consisted of
4, 8, or 16 morphed faces each uniquely varying along a happy-angry continuum (Experiment 1) or a neutral-
happy/angry continuum (Experiments 2 & 3). Across the three experiments, we reduced the amount of emotion
variance in the sets to explore the boundaries of this process. Participants judged the perceived average emotion
from each set on a continuous scale. We computed and compared objective and subjective difference scores,
using the morph units and post-experiment ratings, respectively. Results of the subjective scores were more
consistent than the objective ones across the first two experiments where the variance was relatively large, and
revealed each time that increasing set size led to a poorer averaging ability, suggesting capacity limitations in
establishing ensemble representations for multiple facial expressions. However, when the emotion variance in
the sets was reduced in Experiment 3, both subjective and objective scores remained unaffected by set size,
suggesting that the emotion averaging process was unlimited in these conditions. Collectively, these results
suggest that extracting mean emotion from a set composed of multiple faces depends on both structural (at-
tentional) and stimulus-related effects.

1. Introduction

For the last ten years, evidence has accumulated showing that
human observers are able to rapidly process multiple emotional faces
shown concurrently and extract the average emotion from them (e.g.,
Elias, Dyer, & Sweeny, 2017; Haberman & Whitney, 2007, 2009; Ji,
Rossi, & Pourtois, 2018). The representation which summarizes mul-
tiple features or items into an ensemble is referred to as ensemble re-
presentation (Alvarez, 2011; Whitney & Leib, 2018), and is thought to
allow outlier detection in visual search (Cavanagh, 2001), as well as
minimize the impression of being exposed to a visual world that would
be too rich and complex to handle (Cohen, Dennett, & Kanwisher, 2016;
Rensink, O'Regan, & Clark, 1997).

Like averaging low-level features or stimuli, for example orientation
(Parkes, Lund, Angelucci, Solomon, & Morgan, 2001) and size (Ariely,
2001; Chong & Treisman, 2005), the ability of deriving the affective gist
from multiple facial expressions has also been shown to be very robust
and flexible across different tasks and contexts, occurring implicitly
(Haberman & Whitney, 2007), and even on sets containing as many as
24 individual faces shown simultaneously for only 100ms (Yang, Yoon,
Chong, & Oh, 2013). In addition, even when the accuracy of individual

representations is very low (e.g., at chance level) because of limited
attentional resources, ensemble representation remains surprisingly
precise (Fischer & Whitney, 2011; Haberman & Whitney, 2009, 2011; Li
et al., 2016).

On the other hand, the underlying perceptual mechanism re-
sponsible for creating ensemble representation for higher-level in-
formation (such as facial expressions) is still largely unclear and under
debate in the existing literature. An open question remaining pertains to
knowing whether ensemble representation could help overcome or
bypass limitations in visual processing (Alvarez, 2011; Attarha, Moore,
& Vecera 2014; but cf. Allik, Toom, Raidvee, Averin, & Kreegipuu,
2013; Chong & Treisman, 2005; Cohen et al., 2016; Ji, Chen, Loeys,
Pourtois, 2018).

One way to assess attention bottlenecks in visual processing is using
a classical set-size (i.e., the number of items in the set) manipulation
(Theeuwes, 1992; Treisman & Gelade, 1980; Wolfe, 2007). This ma-
nipulation has been widely used in visual search studies in the past. For
example, searching for a negative (angry) face surrounded by neutral
faces used as distractor was found to be less impaired by increasing set
sizes and thus more efficient, compared to a control condition where a
positive face had to be searched in the set (Horstmann, 2007; Öhman,
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Lundqvist, & Esteves, 2001). Based on capacity models for divided at-
tention (Broadbent, 1958; Kahneman, 1973), if visual processing is
capacity unlimited, then each stimulus is analyzed independently, so
that the quality of perception does not vary (i.e., decrease) with in-
creasing set sizes. In comparison, if perceptual capacity is limited,1 then
there is by definition a limit imposed on the amount of information
processed at a given time such that interference (competition) between
stimuli occurs, particularly so when the number of stimuli in the set
increases.

Different from the earlier psychophysical studies which focused on
exploring set size effect in the processing and detection of a single
target, studies on ensemble representation consider all stimuli in the set
as target elements that all participate in principle to shape visual pro-
cessing and eventually determine emotion perception. Using set-size
manipulations, Haberman and Whitney (2007, 2009) previously found
that the averaging performance was not influenced by increasing set
sizes, which provided support for a capacity unlimited process, and was
consistent with findings on averaging low-level features or stimuli (e.g.,
mean size, Ariely, 2001; Chong & Treisman, 2005). Similar to these
previous psychophysical studies on mean size representation (Ariely,
2001), Haberman and Whitney (2007, 2009) used a uniform distribu-
tion of emotional intensities composed of four unique morph units, and
notably, they selected only one single identity. Therefore, the sets used
in their study usually remained relatively homogeneous or regular with
only four different expressions, no matter whether the set size was 4 or
16. However, these homogenous sets would presumably ease the sam-
pling strategies. As a matter of fact, in these conditions, sampling only
one or two items might explain behavioral performance and the re-
sistance to set size manipulations, as demonstrated by simulation
methods (Myczek & Simons, 2008).

In a recent study (Ji, Chen, et al., 2018), we found that the per-
ceptual capacity of establishing mean representation for mixed full-
blown angry and happy facial expressions was limited, using the ex-
tended simultaneous-sequential paradigm (Scharff, Palmer, & Moore,
2011). However, it might be challenging and also uncommon to
average multiple facial expressions that convey distinct, and even op-
posite, emotion categories (i.e., happiness vs. anger), as the variance in
the set is necessarily high in these conditions. Further, it has been
shown previously with low-level attributes such as size or orientation
that the averaging turned out to be easier and more accurate when the
variance in the set was reduced (e.g., Solomon, Morgan, & Chubb,
2011). To overcome this problem, in the current study, we used a
standard morphing technique meant to reduce the variance of facial
expressions presented within the set, as well as to better control their
actual emotion intensity values. Moreover, we also manipulated this
factor across different experiments to examine if it reliably influenced
the averaging process. On the other hand, in order to reduce the reg-
ularity in the set and thus create a situation where a subsampling
strategy would be inadequate to perform the averaging task, we
decided to use different stimuli in the set invariably, namely having
different emotional values each time, as was done previously in the case
of mean size perception (Marchant, Simons, & de Fockert, 2013;
Utochkin & Tiurina, 2014). However, for emotional facial expressions
that have a more limited range than low-level properties, a caveat is
that for larger set sizes, they are still rather homogeneous as the dif-
ferent stimuli composing the set are necessarily similar. As a compro-
mise, in the current study, we employed a uniform distribution of four
unique morph units, regardless of the varying set size (from 4 to 16),
similarly to Haberman and Whitney (2007, 2009), but unlike them, we
selected 16 different face identities, to increase heterogeneity in the set.
In addition, unlike Haberman and Whitney (2007, 2009), we also

collected from the same participants emotion ratings for all the in-
dividual (unmorphed) faces used in the main experiment in order to
assess whether the objective (i.e., actual morph unit) or subjective (i.e.,
valence intensity rating) value best accounted for the averaging per-
formance during the task (see Methods for details). This choice was
motivated by the results of our previous study (Ji, Chen, et al., 2018)
where we found that the subjective emotion perception of faces was a
reliable predictor of performance during the main averaging task since
it took into account the subject-specific perception of the emotional
faces used as stimuli that can vary considerably across participants
(unlike fixed morph units).

All in all, the current study therefore aimed at exploring the (at-
tention) boundaries for extracting the mean emotion from a set com-
posed of multiple facial expressions and how the emotion variance
across them could modulate the processing capacity, using a standard
set size manipulation and well controlled face stimuli (by means of a
morphing procedure). To this aim, three different experiments were
performed. Across them, participants judged the perceived average
emotion from each face set on a continuous scale (similarly to Ji, Chen,
et al., 2018). The face set consisted of 4, 8 or 16 faces, and was pre-
sented for 500ms. In Experiment 1, we used morphed faces extracted
from a continuum going from anger to happiness, hence providing a
between-emotion categories manipulation. In Experiments 2 and 3, we
used within-emotion continua (either from neutral to happy or from
neutral to angry) in separate blocks, to decrease the inter-item (face)
variance in the sets in terms of emotional expressions. Further, Ex-
periment 3 differed from Experiment 2 in that the distance between the
different morph units was smaller (thus the emotion intensity variance
within the face set was smaller) in the former compared to the latter
experiment. (i) We predicted that the averaging performance should
mainly be capacity-limited (see Ji, Chen, et al., 2018), in the sense of
being influenced by the set size manipulation: a worse performance was
expected for large compared to small set sizes. (ii) In addition, we hy-
pothesized that the averaging performance would improve and be less
affected by set size when the inter-item (face) variance (in terms of
emotion expressions) decreased. Hence, we surmised modulatory ef-
fects of set size and inter-stimulus variance on the ability to extract the
mean emotion from a complex set composed of multiple facial ex-
pressions.

2. General methods

2.1. Participants

All three experiments included twenty-four participants from Ghent
University (Experiment 1: 18–25 years, 17 females; Experiment 2:
18–25 years, 15 females; Experiment 3: 19–28 years, 19 females). The
sample size of 24 was determined a priori to be consistent with our
previous behavioral study (see Ji, Chen, et al., 2018). The participants
gave written informed consent prior to the start of the experiment and
were compensated 10 Euro per hour. They reported to be right-handed
and have normal or corrected-to-normal vision. The study protocol was
conducted in accordance with the Declaration of Helsinki and approved
by the local ethics committee.

2.2. Stimuli

Sixteen different identities, eight males and eight females, were
selected from the NimStim database (Tottenham et al., 2009). Each face
identity showed happy, angry, or neutral expression, all with closed
mouth. The hair, ears, neck and other external information were
cropped. All images were converted to grey scale, and scaled to the
same mean luminance and root-mean-square contrast (Bex & Makous,
2002). Each face image subtended a visual angle 4.03°× 4.28°, and was
presented against a homogenous black background.

Face images were generated by morphing using FantaMorph 5. In

1 A limited-capacity parallel model is also possible (Palmer, 1990), but in the current
study, we did not distinguish between parallel and serial accounts of limited-capacity
processing as it goes beyond its scope.
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Experiment 1, the morphing was carried out between the negative (Face
1) and the positive expression (Face 50) for each identity separately
(Fig. 1), which resulted in a total of 800 unique face stimuli (50
faces× 16 identities). The differences in emotion intensity between
two adjacent images were denoted as one morph unit. In Experiments 2
and 3, images were morphed between the neutral (Face 1) and the apex
of the corresponding expression (Face 50, either happy or angry)
(Fig. 1). This resulted in a total of 1584 unique face stimuli (1 neutral,
49 angry, 49 happy faces× 16 identities). The differences in emotion
intensity between two adjacent images within each emotion category
were denoted as one morph unit.

Each face set consisted of 4, 8, or 16 identities conveying different
emotional intensities. The mean emotion of each set was randomly
chosen before each trial, and then four unique morph units surrounding
the mean were selected. The smallest distance between each emotion
unit was 6 (mean ± 3,± 9; as used in previous studies, see Haberman
& Whitney, 2007, 2009) in Experiment 1 where angry and happy faces
were morphed. In Experiment 2 where neutral and emotional faces
were morphed, the distance was increased to 12 (mean ± 6,± 18), in
order to match the emotion variance of face sets used in Experiment 1.
In Experiment 3, the distance was 6 (mean ± 3,± 9), but the per-
ceived variance was smaller than in Experiment 1 (see Results). Each
face set did not include the extreme emotional values (either Face 1 or
Face 50). Thus, the mean was randomly selected from a uniform dis-
tribution of morph units ranging from 11 to 40 in Experiments 1 and 3,
and from 20 to 31 in Experiment 2, respectively. The mean varied in
each trial and was never a member of the face set. In the 8-face set,
there were two instances of each morph unit, and in the 16-face set,
there were four instances of each morph unit. Since the face identities
were different in each face set, although some faces had the same
morph unit, their emotion intensity could be perceived differently.

Like in Marchant et al. (2013), we controlled the density of the face
set across set sizes. When there were 16 faces in the set, they were
randomly located in an invisible 4×4 matrix (14.83°× 20.35°) cen-
tered on the screen, and their locations in each cell were also random.
When there were 8 faces, they were placed in a 3× 3 subset of the
4× 4 matrix. It was equally likely that one of the nine cells was empty
and three (44.4%) or four faces (55.6%) out of the eight were presented
in the central 2× 2 cells. For the 4-item set, the faces were placed in a
2× 2 subset of the 4× 4 grid. It was equally likely that these smaller
subsets were present in any of the possible locations within the large
4× 4 matrix. Therefore, there could be one (44.4%), two (44.4%), or
four faces (11.1%) in the central 2× 2 cells.2

2.3. Apparatus and procedure

Participants sat at around 60 cm in front of a 17″ CRT screen with a
refresh rate of 85 Hz. Participants did the average emotion judgement
task first. Speed of response was not emphasized and feedback was not
given, but participants were encouraged to rely on their first impression
and not to think extensively (similarly to Ji, Rossi, et al., 2018; Ji, Chen,
et al., 2018). Afterwards, they rated the emotion intensity and arousal
of the individual faces. The two tasks were programmed and controlled
using the E-Prime Version 2 software (Psychology Software Tools, Inc.,
2001). Experiment 1 lasted about 30min, while Experiments 2 & 3
lasted double as long.

2.3.1. Average Emotion Judgment Task
A trial began with a fixation cross which appeared at the center of

the screen for 500ms. Then, a face set, made up of either 4, 8, or 16
faces, was presented for 500ms, immediately followed by a scrambled
face image used as mask and presented for 100ms. The next trial
started automatically 1000ms–1200ms after participants gave a re-
sponse about “what is the average emotion intensity of all the faces”, by
means of a visual analogue scale (VAS) (Fig. 2). The anchors of the scale
were labeled Extremely negative and Extremely positive respectively, and
the middle point indicated Neutral. The displays of the two labels (ne-
gative on the left or the right) were counterbalanced across partici-
pants. In Experiments 2 and 3, participants were required to judge the
average emotion from neutral to extremely positive (half of the scale)
for happy faces, and from neutral to extremely negative for angry faces.
Hence, emotion (i.e., valence) was manipulated using a block design in
these two experiments.

The set size (4, 8, 16) and the mean emotion (morph unit from 11 to
40 in Experiments 1 and 3, and from 20 to 31 in Experiment 2) of each
face set was randomized within blocks. Every trial had a unique face set
to minimize statistical regularity across trials. In Experiment 1, parti-
cipants performed three experimental blocks of 90 trials. In
Experiments 2 and 3, the emotion category (happy, angry) was blocked,
and participants performed three experimental blocks of 72 trials
(Experiment 2) or 90 trials (Experiment 3) for each emotion category.
The happy and angry blocks were performed alternately, and which
emotion was used in the first block was counterbalanced across parti-
cipants. Participants practiced 30 (Experiments 1 and 3) or 24
(Experiment 2) trials to get acquainted with the average emotion

Fig. 1. Examples of faces morphed from (A) angry to happy used in Experiment 1, and from (B) neutral to happy or (C) neutral to angry used in Experiments 2 & 3.
For each continuum, 50 different images were generated for each face identity.

2 It is known that acuity declines from fovea to periphery (e.g., Anstis 1974). However,
for the 4-face sets, auxiliary results (not shown here) showed that the averaging perfor-
mance was not worse when there were more faces presented in the periphery (than

(footnote continued)
centrally), with one exception found in Experiment 2 when considering the subjective
difference scores (with the opposite direction though). Furthermore, when we compared
the 4-face set condition including one central face/three peripheral faces to the 8-face and
16-face conditions, the effect of set-size remained unchanged in all three experiments.
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judgments task. Practice trials were excluded from all subsequent
analyses. Before the practice session, we showed participants several
face sets as examples to help them understand and use the verbal labels
used as anchors on the VAS. The label of extremely negative, extremely
positive (or neutral in Experiments 2 & 3) was presented first, and then
the sets containing 4, 8, and 16 original face images all showing the
apex of the corresponding expressions (Face 1 or Face 50) appeared.
Since all three experiments used the same original face images for
morphing, similar references for the scales (not exactly the same
though, because the identities in smaller sets were randomly chosen)
were assumed to be available to all participants.

2.3.2. Face Emotion Rating Task
Following the main experiment and task (see here above), partici-

pants rated the emotion intensity and arousal of each individual face
(Face 1 and Face 50 only). One face appeared at a time in the center and
had the same size as that in the previous task. Participants used the
mouse to click on two different VASes, one for emotion intensity with
two anchors labeled the same as those used in the average emotion
judgment task (Extremely negative and Extremely positive), and another
for arousal labeled Extremely calm and Extremely excited. The labels
shown on the left and the right sides were counterbalanced across
participants.

2.4. Data analysis

2.4.1. Data conversion
The actual positions participants clicked on the VAS in the average

emotion judgement task were converted to data ranging from 0 to 100
in all three experiments. After conversion, the larger the value, the
more positive the participants judged the average emotion from the
face set; and the smaller this value, the more negative the average
emotion from the face set was perceived. The morph units of each face
stimuli (1–50) were also converted to match the range of the converted
average emotion judgments. In Experiment 1, the morph units of every
face were multiplied by 2. In Experiments 2 and 3, they were subtracted
from 50 for angry faces and added with 50 for happy faces. After
conversion, the larger the morph unit, the more positive the face stimuli

was, and the smaller the morph unit, the more negative the face stimuli
was. We extracted the objective absolute difference score by subtracting
the average emotion judgment from the averaged morph units of all the
faces in each face set.

We also computed the mean emotion of the faces in each set based
on the subject-specific emotion intensity ratings obtained for these
same faces (see Face Emotion Rating Task here above, as well as Ji,
Chen, et al., 2018 for a similar procedure). The emotion rating scores
for each original face image (Face 1 and Face 50) were converted in the
same way as the average emotion judgment data (results see
Supplementary Materials). The subjective emotion intensity of the
corresponding morphing faces was extracted by linearly interpolating
between that of Face 1 and Face 50. A subjective absolute difference
score was then calculated as the absolute difference between the con-
verted average emotion judgment and the computed mean emotion
intensity.

2.4.2. Data trimming
For the average emotion judgment task, trials with RTs exceeding

2.5 SDs above or below the grand mean RT for each participant (overall
2.5%, 2.5% and 2.6% trials in Experiments 1–3, respectively) were
excluded. This standard cutoff was chosen before running data ana-
lyses. Another 2.1%, 1.9% and 3.0% of trials with mouse clicks falling
excessively far away from the scale (2.5 SDs above or below the mean
position of the scale) were excluded in Experiment 1, 2 and 3, respec-
tively. Since participants were required to judge on the scale ranging
from neutral to extremely positive or from neutral to extremely nega-
tive for the happy and angry blocks respectively in Experiments 2 and 3,
the mouse clicks on the wrong part of the scale (e.g., judgment on the
scale ranging from neutral to extremely positive in the angry blocks)
were also removed from the analyses, leading to excluding 1.9% and
0.7% trials in these two experiments. One, two and one participants in
Experiments 1–3 respectively had to be excluded because their sub-
jective or/and objective absolute difference scores exceeded the 2.5SD
of the grand mean of all participants in at least one set-size condition.
The data of the remaining twenty-three, twenty-two and twenty-three
participants were included in the statistical analyses.

Fig. 2. Average emotion judgment task in
Experiments 1–3. Participants judged the perceived
average emotion intensity from each face set on a
visual analogue scale, ranging from extremely nega-
tive to extremely positive (these two anchors were
counterbalanced across participants). In Experiments
2 & 3, participants were asked to use half of the scale,
from neutral to extremely positive in happy face
blocks, and from neutral to extremely negative in
angry face blocks. The sets contained 4, 8, or 16
different faces.
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2.4.3. Data analysis
To assess whether the average emotion judgments varied with the

mean morph units assigned for each face set, we conducted multilevel
analyses with random intercepts and random slopes of mean emotion
units for each participant using the lme function in the nlme package
for R (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2017). The null
model with no fixed effects was first built, and then the fixed effects of
mean emotion units and set size were added to the model sequentially.
In Experiments 2 and 3, the fixed effect of Emotion was also introduced
to the model, following the previous two fixed effects. The interaction
between mean emotion units and set size was added at the final step.
Each model was compared to the previous model by the likelihood ratio
tests to examine whether the added component contributed to the
average emotion judgments significantly. The coefficients of the final
model with the best goodness of fit (smallest Akaike information cri-
terion, Akaike, 1974) were reported (see results). To examine the effect
of emotion in Experiments 2 & 3, average emotion judgments (and
mean emotion units) were converted to arbitrary units ranging from 50
to 100: the larger was this value, the larger was the emotion intensity
perceived by the participants in happy and angry sets.

Objective and subjective absolute difference scores were analyzed
using repeated-measure ANOVAs. The common within-subjective fac-
tors across all three experiments were Set size (4, 8, 16). Experiments 2
and 3 had an additional within-subject factor, namely Emotion (angry,
happy). Greenhouse-Geisser correction was applied when assumptions
of sphericity were violated. A Bonferroni correction was used when
multiple comparisons were performed. Except for the standard null
hypothesis significance testing, we also conducted Bayes factor analyses
(Bayesian repeated-measure ANOVAs and Bayesian paired sample t
tests) for both objective and subjective differences scores using JASP
(JASP Team, 2017) on the key main effect of set size and the planned
follow-up comparisons. These additional Bayesian analyses helped to
quantify the strength of the evidence in favor of the null hypothesis
(i.e., no reliable effect of set size) or alternatively, its rejection and
confirmation of the alternative one (i.e., set size influenced perfor-
mance) (Kass & Raftery, 1995).

3. Results

3.1. Experiment 1

3.1.1. Average emotion judgment
There was a significant effect of mean emotion units, χ2

(1)= 82.10, p < .001. Set size or the interaction between mean
emotion units and set size did not contribute to the average emotion
judgments significantly, χ2 (2)= 3.98, p= .14, χ2 (2)= 2.62, p= .27,
and adding these two fixed effects to the model did not improve the
goodness of fit, thus they were not retained in the final model. Mean
emotion units positively predicted observers’ average emotion judg-
ments, b=1.03, SE= .04, t (5901)= 28.16, p < .001.When the face
set contained happier expressions on average, the participants reliably
judged more often the average emotion to be more positive (than ne-
gative) in this face set, which confirmed that participants’ judgments
were sensitive to the morph units of happy and angry faces embedded
in the set (Fig. 3).

3.1.2. Objective difference scores
The ANOVA revealed a significant main effect of Set size, F (1.59,

35.97)= 10.57, p < .001, ηp
2 = .32, BF10= 132.30 (strong evidence

for H1). Post hoc tests showed that the objective difference scores in the
set-size 16 condition (M=17.79, SD=3.47) were larger than both the
set-size 4 (M=15.89, SD=3.18) and the set-size 8 conditions
(M=16.63, SD=3.46), p < .001, BF10= 30.23 (strong evidence),
p= .024, BF10= 13.76 (strong evidence); while the latter two did not
differ significantly from one another, p= .25, BF10= 1.15 (anecdotal

evidence) (Fig. 4).

3.1.3. Subjective difference scores
The main effect of Set size was significant, F (2, 44)= 16.68,

p < .001, ηp
2 = .43, BF10= 3634.12 (strong evidence for H1). Similar

to the objective difference scores, the subjective difference scores be-
came larger with increasing set sizes (Fig. 4). The subjective difference
scores were larger in the set-size 16 condition (M=19.75, SD=3.55)
than those in the set-size 8 condition (M=18.41, SD=3.49), p= .009,
BF10= 41.96 (strong evidence), and both of them were larger than
those in the set-size 4 condition (M=17.32, SD=3.68), p < .001,
BF10= 270.76 (strong evidence), p= .038, BF10= 4.98 (moderate
evidence).

Fig. 3. Average emotion judgments (means) of Experiment 1, shown separately
for each mean emotion unit and the three set sizes, collapsed across partici-
pants. The larger the judgment, the more positive participants perceived the
face set; the smaller the judgment, the more negative participants judged it. The
regression lines in the graph were fitted for the aggregated average emotion
judgments for each set size condition, for illustration purpose.

Fig. 4. Objective and subjective absolute difference scores (means) of
Experiment 1, shown separately for the three set sizes. The larger the value, the
worse the averaging ability. The error bar represents one standard error of
mean.
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3.2. Experiment 2

3.2.1. Average emotion judgment
Mean emotion units significantly predicted observers’ average

emotion judgments, χ2 (1)= 111.19, p < .001. There was also a sig-
nificant effect of Set size, χ2 (2)= 95.38, p < .001. Adding the effect
of Emotion further improved the model, χ2 (1)= 100.42, p < .001.
The interaction between mean emotion units and set size was not sig-
nificant, χ2 (2)= .55, p= .76, and hence they were not included in the
final model. When the face set contained emotionally stronger expres-
sions on average, the participants reliably judged more often the
average emotion to be stronger (more positive or negative) compared
with neutral in this face set, b=0.68, SE= .04, t (9781)= 17.45,
p < .001, which confirmed a positive relationship between average
judgments and the morph units of happy or angry faces in the set
(Fig. 5). Interestingly, the average emotion judgments were overall
larger when set size increased, revealing an amplification effect. The
judgments in the set-size 16 condition were larger than the set-size 8
condition, t (9781)= 4.35, p < .001, and both of them were larger
than the set-size 4 condition, t (9781)= 9.81, p < .001, t
(9781)= 5.50, p < .001. Angry face sets were judged to be stronger
than happy face sets, t (9781)= 10.04, p < .001.

3.2.2. Objective difference scores
The ANOVA showed no significant main effect of Set size, F (1.40,

29.36)= 1.37, p= .27, ηp
2 = .061, BF10= 0.21 (moderate evidence for

H0). The main effect of Emotion, F (1, 21) < 1, ηp
2 < .001, or the

interaction between Set size and Emotion did not reach significance
either, F (1.55, 32.47)= 2.67, p= .096, ηp

2 = .11 (Fig. 6).

3.2.3. Subjective difference scores
There was no significant interaction between Set size and Emotion,

F (2, 42)= 1.28, p= .29, ηp
2 = .06. The main effect of Set size was

significant, F (1.56, 32.73)= 18.05, p < .001, ηp
2 = .46,

BF10= 1724.15 (strong evidence for H1). The subjective difference
scores increased when there were more faces in the set (Fig. 6). They
were the largest in the set-size 16 condition (M=13.17, SD=2.44),
which were larger than those in the set-size 8 condition (M=12.05,

SD=1.93), p= .001, BF10= 108.50 (strong evidence), and the set-size
4 condition (M=11.22, SD=2.30), p < .001, BF10= 326.45 (strong
evidence). The subjective difference scores were also larger when there
were 8 faces compared with 4 faces in the set, p= .036, BF10= 4.28
(moderate evidence). The main effect of Emotion was also significant, F
(1, 21)= 4.84, p= .039, ηp

2 = .19. The subjective difference scores for
happy faces (M=12.70, SD=3.58) were larger than those for angry
faces (M=11.60, SD=2.88).

3.3. Experiment 3

3.3.1. Average emotion judgment
Similar to Experiment 2, both mean emotion units and set size

significantly predicted observers’ average emotion judgments, χ2

(1)= 59.80, p < .001, χ2 (2)= 26.82, p < .001. Adding the effect of
Emotion further improved the model, χ2 (1)= 56.11, p < .001. The
interaction between mean emotion units and set size did not reach
significance, χ2 (2)= 4.85, p= .09, and hence they were not included
in the final model. Mean emotion units positively predicted observers’
average emotion judgments, b=0.77, SE= .05, t (11698)= 16.97,
p < .001, confirming that participants’ judgments were sensitive to the
emotion intensity of faces (indicated by the morph units) in the set
(Fig. 7). When there were 16 or 8 faces in the set, the judgments of
setsize16 and setsize8 were both larger than those in the condition of 4
faces, t (11698)= 5.13, p < .001, t (11698)= 3.26, p= .003, while
the former two did not differ significantly from each other, t
(11698)= 1.88, p= .18. Angry face sets were judged to be stronger
than happy face sets, t (11698)= 7.50, p < .001.

3.3.2. Objective difference scores
The main effect of Set size did not reach significance, F (2,

44)= 2.69, p= .079, ηp
2 = .11, BF10= 0.15 (moderate evidence for

H0). The main effect of Emotion was not significant either, F (1,
22)= 1.28, p= .27, ηp

2 = .06, nor did the interaction between Set size
and Emotion, F (2, 44)= 2.49, p= .095, ηp

2 = .10 (Fig. 8).

3.3.3. Subjective difference scores
There was no significant main effect of Set size, F (1.54,

33.80)= 2.85, p= .084, ηp
2 = .12, BF10= 0.12 (moderate evidence for

H0). The main effect of Emotion or the interaction between Set size and
Emotion was not significant either, F (1, 22)= 1.24, p= .28, ηp

2 = .05;
F (2, 44) < 1, ηp

2 = .01 (Fig. 8).

3.4. Comparison of Experiment 2 and 3

In order to examine more directly the possible modulatory effect of
variance on averaging performance, we compared the results of
Experiments 2 and 3, with Experiment as between-subject variable, and
Set size and Emotion as within-subject variables. Since the range of the
selected mean morph units (from 20 to 31) was smaller in Experiment 2
than in Experiment 3 (from 11 to 40), we selected the trials in this last
experiment for which the mean values matched the ones used in
Experiment 2. To be noted, the variance of emotion intensities in the
face sets in the sub-selected trials was still significantly smaller in
Experiment 3 (M=8.27, SD=1.31) than in Experiment 2, F (1,
43)= 44.58, p < .001, ηp

2 = .51. For the objective difference scores,
the main effect of Experiment did not reach significance, F (1,
43)= 2.42, p= .13, ηp

2 = .05, nor did the main effect of Set size, F
(1.60, 68.69)= 3.19, p= .058, ηp

2 = .07. Other main effects or inter-
actions were not significant either, ps > .12. For the subjective dif-
ference scores, the main effect of Experiment did not reach significance,
F (1, 43)= 3.85, p= .056, ηp

2 = .08, but there was a significant main
effect of Set size, F (1.55, 66.44)= 16.57, p < .001, ηp

2 = .28, and an
interaction between these two factors, F (2, 86)= 4.45, p= .014,
ηp

2 = .09. A simple effect analysis revealed that the subjective difference

Fig. 5. Average emotion judgments (means) of Experiment 2, shown separately
for each mean emotion unit, the two emotions and three set sizes, collapsed
across participants. The larger the judgment, the stronger emotion (either anger
or happiness) participants perceived the face set; the smaller the judgment, the
weaker emotion participants judged. The regression lines in the graph were
fitted for the aggregated average emotion judgments for each set size and
emotion condition, for illustration purpose.
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scores did not differ significantly between Experiments 2 and 3 when
set size was 4 (Exp2: M=11.22, SD=2.30; Exp3: M=10.60,
SD=2.23) or 8 (Exp2: M=12.05, SD=1.93; Exp3: M=11.00,
SD=2.09), F (1, 43) < 1, p= .36, F (1, 43)= 3.04, p= .088, whereas
they were significantly larger in Experiment 2 (M=13.17, SD=2.44)
than Experiment 3 (M=11.23, SD=2.38) when the set size was 16, F
(1, 43)= 7.28, p= .01. Moreover, the interaction between Experiment
and Emotion was also significant, F (1, 43)= 5.46, p= .024, ηp

2 = .11.
The subjective difference scores for the happy faces were larger in
Experiment 2 (M=12.70, SD=2.68) compared to Experiment 3
(M=10.44, SD=3.37), F (1, 43)= 6.15, p= .017; while they did not
differ between experiments (Exp2: M=11.60, SD=2.00; Exp3:
M=11.45, SD=1.86) for the angry faces, F (1, 43) < 1, p= .79.

4. General discussion

Across three experiments, we used a standard set size manipulation
to test the processing capacity for extracting mean emotion from

multiple facial expressions shown concurrently. Because inter-item
variance changed between the three experiments (it was relatively large
in Experiments 1 & 2, and smaller in Experiment 3), we could also
examine the effect of emotion variance on the averaging performance.
The results showed that increasing the number of faces in the set led to
a clear impairment of the averaging performance (especially when
considering the subjective, as opposed to objective difference scores),
no matter the faces in the set showed between- (Experiment 1) or
within-categorical emotions (Experiment 2). Hence, we found evidence
in favor of capacity limitations to extract the mean emotion from a set
composed of multiple facial expressions. Additionally, emotion var-
iance also influenced the averaging performance. When the emotion
variance was decreased (Experiment 3), increasing set sizes was no
longer accompanied by a significant cost at the behavioral level, sug-
gesting thereby that the averaging process could even become capacity
unlimited under some circumstances, pending the actual variability (in
terms of emotion intensities) across the different items forming the set
was considerably reduced.

Previously, we already found using the simultaneous-sequential
paradigm that averaging mixed full-blown happy and angry faces was
in essence capacity limited (Ji, Chen, et al., 2018). The current study
based on the set size manipulation, therefore complemented and ex-
tended these earlier results in several directions. First, we showed that
when morphed angry and happy faces were used to decrease the inter-
item variability, the processing capacity was still limited (Experiment
1). Additionally, when the emotion variance of faces was matched,
averaging emotional faces within the same category (i.e. angry or
happy expressions with different identities) was capacity limited as well
(Experiment 2). By comparison, using similar set-size manipulations,
previous studies showed that the averaging performance did not vary
with set size (Haberman & Whitney, 2007, 2009; Im et al., 2017), which
seemed to be compatible with an unlimited-capacity process. The dis-
crepancy between our and these previous results might be explained by
the fact that the sets we used here had relatively larger variance than
the sets used in these previous studies. Further, we used a continuous
scale as response format in the present case whereas binary responses
were collected in these earlier studies. This factor too might account for
some of the differences found in the averaging ability across existing
studies since the use of a VAS probably involves additional processes
compared to a simple two-alternative forced choice task (see also Ji,
Chen, et al., 2018 for a discussion of this issue). Regarding the former
issue, Haberman and Whitney (2007, 2009) used only a single face
identity in their sets. In comparison, here, we invariably used different
face identities in the sets to improve ecological validity and reduce this
artificial redundancy or regularity in them. Although we included

Fig. 6. Objective and subjective absolute difference scores (means) of Experiment 2, shown separately for the two emotions and three set sizes. The larger the value,
the worse the averaging ability. The error bar represents one standard error of mean.

Fig. 7. Average emotion judgments (means) of Experiment 3, shown separately
for each mean emotion unit, the two emotions and three set sizes, collapsed
across participants. The larger the judgment, the stronger emotion (either anger
or happiness) participants perceived the face set; the smaller the judgment, the
weaker emotion participants judged. The regression lines in the graph were
fitted for the aggregated average emotion judgments for each set size and
emotion condition, for illustration purpose.
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replications of emotional morph units for the larger set sizes (8 and 16),
the faces were more heterogeneous along this specific dimension in the
current study compared to Haberman and Whitney (2007, 2009). For
low-level features or stimuli, it has been shown previously that the
variance or heterogeneity reliably impacted the precision of ensemble
representations (Solomon et al., 2011), and the averaging performance
dropped significantly with increasing set sizes when the variance or
range of items was increased (Marchant et al., 2013; Utochkin &
Tiurina, 2014). Our new results are consistent with these earlier find-
ings, extending them to the case of averaging multiple emotional ex-
pressions. When the variance of emotion intensities in the set was
minimized by decreasing the distances of the selected morph units in
Experiment 3 compared to Experiment 2, the set size effect disappeared
(for subjective difference scores), an effect explained by a better per-
formance for large set sizes in this experiment.

An additional interesting finding resulting from the current study
relates to the unexpected amplifying effect found with increasing set
size in Experiments 2 & 3, but not in Experiment 1. More specifically, in
Experiments 2 & 3, when there were more faces in the set, participants
were inclined to judge the average emotion with stronger intensity
(e.g., much happier or angrier depending on the condition) on the VAS
scale relative to the condition with a smaller set size, even though the
actual mean intensity (either computed based on the subjective ratings
or the objective morph units) was actually kept constant across the
different set-size conditions or even slightly weaker with increasing set
sizes (see Supplementary Materials). Noteworthy, previous studies on
ensemble representation usually used binary responses, and computed
either accuracy or a discrimination threshold (emotion: Haberman &
Whitney, 2007, 2009; size: Ariely, 2001; Chong & Treisman, 2005).
Alternatively, continuous adjustment responses were collected and the
error between the estimated and the actual mean information was
calculated (emotion: Elias et al., 2017; Haberman & Whitney, 2011;
size: Marchant et al., 2013). To the best of our knowledge, these earlier
studies did not analyze or report the raw average judgment data ex-
tracted from a continuous scale however, like we did in the current
study. Noteworthy, these continuous data probably provide richer and
more complex information about the underlying averaging process than
the use of binary responses. When the sets contained only one emotion
category (either angry or happy) composed of faces having different
intensities (Experiments 2 & 3), participants might use some biased
sampling or weighting, where some relatively stronger expressions
were selected or had larger weights in the averaging, and at the same
time some expressions with relatively weak intensities were down-
weighted or even ignored. When there were more faces in the set (larger
set size), the number of emotionally stronger faces was also larger and

these faces were more easily to be selected or attended, leading perhaps
to the observed amplification effect. However, this does not entail that
participants did not average multiple faces and only detected the
emotionally strongest face, because the range of emotions intensities
were identical across set sizes, and selecting only the strongest face
could logically not result in such an amplification effect. From an
evolutionary perspective, it may even be beneficial to have this sort of
biased subsampling or weighting at the perceptual level and the re-
sulting amplifying responses, since it seems important to rapidly dis-
criminate which faces in the crowd are potentially friendly and which
ones are threatening or foes, using the ones with clear expression/in-
tensity each time (allowing in turn to establish a weighted average of
them) (Cacioppo & Berntson, 1994). Interestingly, a similar bias has
been demonstrated in numerical averaging where larger magnitude of
numbers were selectively over-weighted compared to smaller numbers,
and this effect was assumed to be beneficial somehow to deal efficiently
with inherent capacity limitations during the averaging process
(Spitzer, Waschke, & Summerfield, 2017). Alternatively, the observed
amplifying effect could result from the fact that the intensity of some
faces in the set was perceived “exaggeratedly” because of the use of a
rapid and peripheral presentation in the present study. A similar effect
was previously reported for low-level visual stimuli and accounted for
by a shift of neural representations to extreme channels during popu-
lation coding (e.g., Mareschal, Morgan, & Solomon, 2008). At any rate,
it remains currently unclear what factor(s) eventually caused this am-
plifying effect in the present case and therefore, additional work is
needed to elucidate it.

At the methodological level, our study also adds to previous work on
this topic by computing and comparing systematically across three
experiments so-called objective to subjective differences scores, and
eventually showing some valuable differences between them. Here, we
did not only compute and use the objective morph units against which
the actual averaging performance was calculated (as in Haberman &
Whitney, 2007, 2009), but we also collected for all participants sub-
jective ratings (in terms of intensity) for all the original face stimuli
used in our experiments, and could therefore compute subjective dif-
ferences scores that took into account the subject-specific perception of
these faces (as opposed to arbitrarily set morph units) during the
averaging process. In Experiments 1 & 3, the objective and the sub-
jective difference scores showed similar results. Interestingly, in Ex-
periment 2, we only found a clear effect of set size using the subjective
difference scores, but not the objective difference scores. Moreover, we
found that the averaging performance was influenced by the emotion
variance when using the subjective difference scores only, as opposed to
the objective difference scores, suggesting indirectly that the averaging

0

2

4

6

8

10

12

14

16

Angry Happy

A
bs

ol
ut

e 
di

ffe
re

nc
e 

sc
or

es
Objective

Setsize4

Setsize8

Setsize16

0

2

4

6

8

10

12

14

16

Angry Happy

A
bs

ol
ut

e 
di

ffe
re

nc
e 

sc
or

es

Subjective

Setsize4

Setsize8

Setsize16

Fig. 8. Objective and subjective absolute difference scores (means) of Experiment 3, shown separately for the two emotions and three set sizes. The larger the value,
the worse the averaging ability. The error bar represents one standard error of mean.
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process actually depended on the subject-specific perception of these
individual emotional expressions. Further, this dissociation confirms
that these two dependent variables likely capture different effects or
influences in the measurements made, and that for emotional facial
expression recognition (and averaging), taking into account the subject-
specific perception (in terms of emotional intensity) allows to reveal
clearer effects of set-size (attention) and variance. Elias et al. (2017)
previously collected subjective ratings for the emotional face stimuli
they used, but obtained from independent raters. At variance with our
results, these authors did not find any reliable difference for the aver-
aging performance when comparing morph units to these subjective
ratings. Accordingly, some caution is needed in the interpretation of the
difference (or lack thereof) between the objective and the subjective
difference scores, and additional empirical work is needed to elucidate
under which conditions they converge (as in Experiment 1) or can show
dissociable effects (as in Experiment 2). As can be seen in the
Supplementary Materials section, it is striking that some of the face sets
having the exact same mean morph units were eventually not perceived
as conveying the same mean emotional intensity by different partici-
pants, emphasizing the individual differences of the muscular-action-
intensity expressed in the emotional face stimuli on one hand (Ekman,
1993), and the idiosyncratic perception of emotional intensities on the
other hand (Ekman et al., 1987). More generally, this apparent differ-
ence between objective and subjective differences scores might be im-
portant to consider in future studies that try to assess the commonalties
or differences (and sometimes even independence) between averaging
high-level (such as emotional facial expressions) and low-level prop-
erties (Haberman, Brady, & Alvarez, 2015). In the case of emotional
facial expressions, like some of our results suggest (see Experiment 2),
depending on which difference score is used, a different outcome can be
found. We therefore want to raise herewith awareness for this im-
portant methodological issue, especially when the focus is on averaging
high-level objects or features, such as emotional facial expressions for
which it is well known that large inter-individual differences do exist.

It is worth noting that because we sought to control and match
density across the three set sizes in the current study, as a result, there
were necessarily more faces shown in the periphery when larger sets
were used. Accordingly, it might be argued that acuity (Anstis, 1974),
as opposed to set size per se, eventually contributed to a drop in
averaging performance with increasing set sizes in the present case (see
Experiments 1 & 2). However, several arguments allow us to rule out
this alternative account. First, in Experiment 3, where emotion variance
was reduced, the exact same display was used as in Experiments 1 & 2,
but no significant impairment of performance was found with in-
creasing set sizes. Hence, we found that the averaging performance
systematically varied across the experiments while acuity presumably
did not. Additionally, auxiliary data analyses confirmed that the aver-
aging performance was not worse when there were more faces pre-
sented in the periphery than centrally in the 4-face sets (see footnote 2).
Although acuity alone is unlikely to explain the present results, in the
case of averaging emotional facial expressions, effects of density and
spatial configuration/extent on set size manipulations have not been
explored systematically yet. Interestingly, such an attempt was made
previously by Dakin (2001) with a focus on mean orientation proces-
sing. Accordingly, it might be valuable in future studies to adopt a si-
milar methodology and eventually assess at the behavioral level if
density and spatial extent can influence the averaging performance for
facial expressions when different set sizes are considered and compared
with one another.

Last, we have to acknowledge that as is often the case with research
on ensemble representation, it remains challenging in the present case
to disentangle the contribution of averaging per se from the use of a
sampling strategy to the observed behavioral results. In this context,
limited capacity sampling strategies (Marchant et al., 2013) or “biased”
weighting based on eccentricity (Ji, Chen, & Fu, 2014) might very well
account for the observed drop in the averaging performance with

increasing set size as well as when the variance in the set was large.
When the number of faces in the set and/or the variability of facial
expressions in the set increased, it became less likely that the specific
stimuli which were sampled or gained additional weight (at the cost of
other ones that were perhaps not sampled or processed) resembled the
entire set. On the other hand, sampling a limited number of faces might
not easily and fully explain the lack of set size effect, when the set was
irregular or heterogeneous (Chong, Joo, Emmmanouil, & Treisman,
2008; Utochkin & Tiurina, 2014), as we found in Experiment 3.
Nonetheless, even if a subsampling strategy could be assumed, it re-
mains currently unclear whether built-in capacity limitations enforced
it, or conversely, this subsampling strategy yielded capacity limitations
to extract the mean emotion from a scene composed of multiple facials
expressions and shown briefly. Hence, additional empirical work, in-
cluding simulations, is probably required to clarify the complex link
between capacity limitations and subsampling.

To conclude, the results of this study suggest that processing capa-
cities to extract the average emotion from multiple facial expressions
shown concurrently is limited. Further, when the variance in the set (in
terms of emotion valence and intensities) is reduced, this process ap-
pears to be less limited as increasing set size no longer negatively in-
fluenced the averaging performance. Moreover, clearer effects of set
size and emotion variances were found on the averaging ability when
using the subject-specific emotion perception (based on subjective
ratings) compared to fixed or arbitrary morph units. As such, these
results confirm that, despite some limitations in processing capacity,
human observers can nevertheless perceive and extract with precision
the mean emotion from a complex scene composed of multiple facial
expressions and shown briefly (especially when they exhibit a limited
variability in their emotional intensity), an extraordinary perceptual
ability that is probably essential to guide interactions in complex social
environments.
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