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Abstract
Major depression is characterized by abnormal reward processing and reinforcement learning (RL). This impairment might stem
from deficient motivation processes, in addition to reduced reward sensitivity. In this study, we recorded 64-channel EEG in a
large cohort of major depressive disorder (MDD) patients and matched healthy controls (HC) while they performed a standard
RL task. Participants were asked to discover, by trial and error, several hidden stimulus-response associations having different
reward probabilities, as enforced using evaluative feedback. We extracted induced fronto-midline Theta (FMT) power time-
locked to the response and feedback as neurophysiological index of RL. Furthermore, we assessed approach-related motivation
by measuring frontal alpha asymmetry concurrently. At the behavioral level, MDD patients and HCs showed comparable RL. At
the EEG level, FMT power systematically varied as a function of reward probability, with opposing effects found at the response
and feedback levels. Although this global pattern was spared in MDD, at the feedback level these patients showed however a
steep FMT power decrease across trials when reward probability was low. Moreover, they showed impaired approach-related
motivation during task execution, as reflected by frontal Alpha asymmetry. These results suggest a dissociation between (globally
spared) RL and (impaired) approach motivation in MDD.
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Introduction

Leading the world burden of diseases (Greden, 2001; Kessler
& Bromet, 2013), major depressive disorder (MDD) encom-
passes a spectrum of psychological and somatic impairments,
which give rise to a large heterogeneity in terms of symptom-
atology, clinical course, and responsiveness to treatment.
However, across all depression subtypes, a causal role in the
etiology and maintenance of this disorder is usually attributed
to a Bdiminished interest or pleasure in all, or almost all,
activities^ and Black of reactivity to usually pleasurable
stimuli^ (DSM-V; APA, 2013), commonly referred to as
anhedonia.

Several research lines have identified reward processing as
a key deficit in depression, putting forward anhedonia as a
valid endophenotype of this emotional disorder (Hasler,
Drevets, Manji, & Charney, 2004). Reward-related deficits
in depression may correspond to alterations of multiple and
nonoverlapping components (Berridge & Robinson, 2003).
These include motivation, reinforcement learning (RL), and
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hedonic capacity (Admon & Pizzagalli, 2015), as well their
interactions with specific cognitive and emotional processes.
Moreover, anhedonia in depression seems to stem from an
abnormal dopamine (DA)-dependent encoding of reward-
related stimuli and RL, as well as motivation and reward-
related decision making, more than experiencing pleasure
per se (Pizzagalli, 2014; Treadway & Zald, 2011).
Consistent with this dissociation, reward does not yield the
normal responsiveness to Bincentive salience^ and subsequent
behavioral adaptation in MDD (Henriques & Davidson,
2000). This behavioral insensitivity to reward has been linked
to a poor integration of reinforcement history over time.
Specifically, Pizzagalli et al., (2008; see also Vrieze et al.,
2013) previously showed, using a probabilistic reward task,
that MDD patients failed to develop a response bias toward
more frequently rewarded stimuli or contingencies, in the ab-
sence of immediate reward delivery. Considering reward-
based decision-making, Treadway et al. (2012) elegantly
showed that depressed patients were less willing to expend
effort for gaining additional reward, compared with controls,
highlighting a core deficit in reward anticipation and motiva-
tion in this mood disorder (see also Salamone & Correa,
2012).

Reinforcement learning provides a standard paradigm to
explore the interplay of reward processing with motivation.
It corresponds to the ability to extract, by trial and error, the
value of actions (Sutton & Barto, 2018) and to approach
reward-related feedback by means of specific motivational
processes to eventually maximize reward. By virtue of these
fundamental properties, RL allows to timely explore and char-
acterize the nature and extent of reward-related deficits ac-
companying MDD (Pizzagalli, 2014). At the electrophysio-
logical level, RL has been linked to specific DA-dependent,
event-related brain potentials (ERPs), including the error-
[ERN] and feedback-related negativity [FRN] (Holroyd &
Coles, 2002; Yeung, Holroyd, & Cohen, 2005). More specif-
ically, reward prediction errors ([RPE] either response-locked
for ERN or feedback-locked for FRN) are thought to be gen-
erated in deep midbrain dopaminergic structures, which in
turn release or inhibit the activation of the dorsal anterior
cingulate cortex (Holroyd, Pakzad-Vaezi, & Krigolson,
2008; Proudfit, 2015; Ullsperger, Fischer, Nigbur, &
Endrass, 2014). Interestingly, the ERN is usually overactive
in internalizing psychopathology (Bakic, Jepma, De Raedt, &
Pourtois, 2014; Endrass & Ullsperger, 2014; Frank, Woroch,
& Curran, 2005; Koban & Pourtois, 2014; Olvet & Hajcak,
2009; Vaidyanathan, Nelson, & Patrick, 2012; Weinberg,
Riesel, & Hajcak, 2012). Conversely the FRN, sometimes
referred to as Reward Positivity (RewP), is usually blunted
in MDD (Proudfit, 2015). A reduced FRN/RewP in depres-
sion could reflect a decreased reward sensitivity (Bress,
Smith, Foti, Klein, & Hajcak, 2012; Weinberg & Shankman,
2016) as well as impaired ability to use the reinforcement

history to drive implicit reward-based learning (Whitton
et al., 2016).

Although the ERN and FRN/RewP have been extremely
valuable to explore brain mechanisms of RL in the past
(Eppinger, Kray, Mock, & Mecklinger, 2008; Holroyd &
Coles, 2002), frontal-midline Theta oscillations (FMT, 4-8
Hz) have been put forward more recently as a complementary
correlate of this process (Hajihosseini & Holroyd, 2013),
bridging RPE signals with cognitive control implementation
(Cavanagh, Figueroa, Cohen, & Frank, 2012; Cavanagh &
Frank, 2014; Holroyd & Umemoto, 2016). FMT power in-
creases during error and negative FB processing, as well as
during response conflict and unexpected events in general
(Cavanagh, Frank, Klein, & Allen, 2010; Cavanagh,
Zambrano-Vazquez, & Allen, 2012; Cohen & Donner, 2013;
Cohen, Wilmes, & van de Vijver, 2011; Gheza, De Raedt,
Baeken, & Pourtois, 2018). During RL, it is thought to link
prediction errors to behavioral adaptation and learning
(Cavanagh et al., 2010; E. H. Smith et al., 2015; van de
Vijver, Cohen, & Ridderinkhof, 2014; van de Vijver,
Ridderinkhof, & Cohen, 2011), presumably by signaling the
need for enhanced cognitive control (Cavanagh & Frank,
2014) as a function of the current prediction error. In the con-
text of RL, cognitive control includes action selection or inhi-
bition (response level) and working memory updating accord-
ing to the accumulating action-outcome history (FB level;
Barch et al., 2017; Collins et al., 2017). Unlike the ERN or
FRN, FMT oscillatory perturbations arising from the ACC
(Cohen, Ridderinkhof, Haupt, Elger, & Fell, 2008; Wang,
2005) reflect both phase-locked and non-phase-locked EEG
activity, thereby providing a signal that is only partially cap-
tured by ERPs (e.g., the N200; Hajihosseini & Holroyd,
2013). In accordance with this notion, Cohen and Donner
(2013) previously demonstrated that removing the phase-
locked component of the EEG (i.e., the ERP) did not reduce
the strength of the conflict-related modulation of the residual
(non-phase locked – Binduced^) FMT. Rather, during re-
sponse conflict, the induced FMTshowed stronger behavioral
association with changes in response time. Moreover, com-
pared with the ERP components, FMT may better capture
neural effects associated with long-distance connections be-
tween the medial and lateral prefrontal cortex (Smith et al.,
2015). By virtue of these properties, assessing induced FMT
during RLmay provide novel insight into reward-based learn-
ing in depression, more closely related to hedonic capacity
(i.e., propensity to modulate behavior as a function of reward),
and beyond DA-dependent RPE detection.

Whereas FMT oscillations provides a useful electrophysi-
ological correlate of performance monitoring during RL, yet
MDD also is characterized by coremotivational deficits. More
specifically, MDD is accompanied by blunted approach-
related motivation, while sometimes associated with an exces-
sive withdrawal/avoidance behavior concurrently.
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Noteworthy, older psychophysiological research performed
by Davidson and colleagues (Davidson, 1993, 1998a;
Davidson, Ekman, Saron, Senulis, & Friesen, 1990;
Henriques & Davidson, 2000) and extensively pursued over
the past three decades (Coan & Allen, 2004; Davidson, 2004;
Gotlib, Ranganath, & Rosenfeld, 1998; Eddie Harmon-Jones
& Gable, 2017) showed that this approach-withdrawal moti-
vation model explains a large amount of interindividual vari-
ability in affect styles and emotional reactivity and maps onto
two competing brain systems in the frontal lobe, as expressed
by hemispheric frontal asymmetries in the Alpha band, selec-
tively. Alpha power contributing to frontal asymmetry effects
is commonly reported from a set of homologous frontal leads
along the coronal axis (in particular F8-F7, F6-F5, F4-F3 and
F2-F1; see Stewart, Bismark, Towers, Coan, & Allen, 2010)
and is thought to be generated mostly (but not only) from the
proximal dorsolateral prefrontal cortex (dlPFC) (Pizzagalli,
Sherwood, Henriques, & Davidson, 2005), even though a
clear regional specificity remains difficult to establish. With
regard toMDD, anhedonic symptoms, such as loss of interest,
reduced hedonic capacity, and decline of goal-related motiva-
tion, have been linked to a putative hypoactive approach-
motivation system, as reflected by lower left prefrontal activ-
ity at rest (Davidson, 1998b; Henriques and Davidson, 1991;
Nusslock et al., 2015; Pizzagalli et al., 2005; see Thibodeau
et al., 2006 for a meta-analysis) and source-estimated in the
precentral and midfrontal gyri (Smith, Cavanagh, & Allen,
2017). Although such a broad dichotomy of frontal lobes spe-
cialization might be too coarse (Miller, Crocker, Spielberg,
Infantolino, & Heller, 2013), and a recent meta-analysis
showed that traditional ways of assessing Alpha asymmetry
have limited diagnostic value for MDD (van der Vinne,
Vollebregt, van Putten, & Arns, 2017), recently important
methodological advances have been introduced to increase
the robustness and heuristic promise of this metric (Smith,
Reznik, Stewart, & Allen, 2017). Moreover, individual differ-
ences in frontal asymmetry and their association to depression
seems to be more pronounced during emotionally or motiva-
tionally evocative tasks (e.g., when approach motivation is
manipulated and induced; Shankman et al., 2007; Stewart
et al., 2014, 2011) rather than at rest and thus may be more
informative when conceived as a state response (i.e.,
"response capability"; Coan et al., 2006) as opposed to a trait
characteristic. For instance, a recent study showed that ap-
proach motivation reflected by asymmetrical frontal cortex
activation during reward anticipation distinguished depressed
from never-depressed individuals and was specifically associ-
ated with motivation-related symptoms (Nelson, Kessel,
Klein, & Shankman, 2017).

In this study, we had the unique chance to assess, using
behavioral and EEGmethods, brain mechanisms of RL (using
FMT oscillatory perturbations), as well as motivation (using
frontal Alpha asymmetry) concurrently in a large cohort of

treatment-resistant MDD patients and compare them to age/
sex/education-matched healthy controls. To explore RL, we
capitalized on a well-validated probabilistic learning task
(Eppinger et al., 2008), previously used and validated in our
laboratory (Bakic et al., 2017, 2014). In short, the added value
of this task is that three reward probabilities are manipulated
concurrently, and their effects on the learning rate and the
phasic signals of enhanced cognitive control can be explored
by using appropriate EEG methods (van de Vijver et al.,
2014). More specifically, learned stimulus-response associa-
tions should lead to increased FMT for incorrect responses
and decreased FMT for negative FB. Based on the evidence
reviewed earlier, we formulated the following hypotheses. (i)
At the behavioral level, the learning slope should be steeper
and accuracy higher for high compared with low reward prob-
ability, with a possible impairment of these RL-based effects
in MDD patients. (ii) At the electrophysiological level, RL
should be abnormal in MDD compared with controls, as evi-
denced by specific alterations in FMT oscillatory activity. In
healthy controls, FMT should exhibit symmetric changes be-
tween response errors and negative FB as a function of reward
probability (van de Vijver et al., 2014) but might be
hypoactive in MDD patients, suggesting blunted cognitive
control modulation during RL. However, we predicted that
these group differences should likely depend on reward prob-
ability (i.e., strength of stimulus-response association), given
that MDD might interfere with RL selectively when higher
efforts and enhancedmotivation are required to foster learning
(Bakic et al., 2017; Salamone, Correa, Nunes, Randall, &
Pardo, 2012; Thomsen, 2015; Treadway et al., 2012). In par-
ticular, we expected larger group differences at the FB level
when reward probability was low compared with high, be-
cause a higher motivation is presumably required in this con-
dition for maintaining an active and sustained exploration of
the FB. (iii) Core motivational processes should be impaired
as well in theseMDD patients. More specifically, we surmised
that MDD patients, compared with the controls, would show
hypo left relative to right frontal activation while processing
the FB, reflecting a deficient approach-related motivation
(Davidson, 1998b; Nelson et al., 2017).

Material and methods

Participants

Forty-two patients diagnosed with unipolar MDD (30 fe-
males, mean age: 41.40, standard deviation [SD] = 12.04;
meeting DSM-V cri ter ia – American Psychiatr ic
Association, 2013) and 60 HCs matched on group level for
age, sex, and education (35 females, mean age: 37.90, SD =
12.82) participated in the current study. All participants had
normal or corrected-to-normal vision. The MDD sample was
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recruited from ambulatory and hospitalized patients of the
Ghent University Hospital. This EEG study was part of a
larger clinical trial (http://clinicaltrials.gov/show/
NCT01832805) that examined beneficial effects of
neurostimulation (accelerated intermittent theta burst
stimulation [iTBS]) of the left dorsolateral prefrontal cortex
(dlPFC) in MDD (see also Duprat et al., 2016). The present
EEG study included baseline data collected before the start of
the treatment and examined group level differences during RL
between MDD patients and HCs at this specific timepoint
only. The patients’ diagnosis were confirmed by the Mini
International Neuropsychiatric Interview (Mini; Sheehan
et al., 1998). Depression severity was assessed by a certified
psychiatrist with the 17-item Hamilton Rating Scale for
Depression (HRSD; Hamilton, 1980) and the 21-item Beck
Depression Inventory (BDI; Beck, Steer, & Brown, 1996).
Hedonic responses were assessed with self-report question-
naires, the Snaith-Hamilton Pleasure Scale (SHAPS) (Snaith
et al., 1995), and the Temporal Experience of Pleasure Scale
(TEPS) (Gard, Gard, Kring, & John, 2006); the latter assessed
anticipatory separately from consummatory Anhedonia.
Importantly, these patients were deemed treatment-resistant
(Fava, 2003) and were classified as at least Stage I
treatment-resistant (i.e., they had at least one unsuccessful
treatment trial with an SSRI/SNRI; Rush, Thase, & Dubé,
2003). Moreover, all of the patients underwent a washout
period from medications and were medication-free at least 2
weeks before the baseline assessment. Only habitual benzodi-
azepine agents were allowed.1 Exclusion criteria were (I) bi-
polarity, (II) the use of antipsychotics, tricyclic antidepressant,
(III) a history of neurological disorders, including epilepsy
and head injury with a loss of consciousness, (IV) a history
of electroconvulsive therapy, (V) a past or present substance
abuse, (VI) a past or present experience of psychotic episodes,
and (VII) learning disorders. Some of those admitted to the
study were further excluded a posteriori for the following
reasons. (i) Insufficient or no learning during the main task,
as indicated by learning curves below chance level (11 HCs, 6
MDDs). (ii) Excessively noisy EEG signal or severe EEG
recording issues (3 HCs, 2 MDDs). (iii) Eight controls were
excluded due to high or missing BDI scores. (iv) Four controls
were excluded to match age and gender between HCs and
MDD patients at baseline. This was achieved by removing
the oldest HCs. The final sample consisted of 34 HCs (27
females, mean age: 36.21 years, SD = 11.66) and 34 MDD

patients (27 females, mean age: 42.68 years, SD = 11.69). The
study was approved by the ethics committee of the Ghent
University Hospital.

Probabilistic learning task

Participants performed a probabilistic learning task (Fig. 1)
previously devised and validated by Eppinger et al. (2008)
and used in Bakic et al. (2017, 2014). Colorful line drawings
(Rossion & Pourtois, 2004) were used as visual stimuli, pre-
sented against a white homogenous background on a 17-inch
computer screen. These stimuli consisted of visual objects
belonging to different semantic categories (artifacts, build-
ings, musical instruments, clothes, vehicles, furniture). Their
mean size was 7-cmwidth x 5-cm height, corresponding to 5 x
3.6 degrees of visual angle at 80 cm viewing distance. On each
trial, participants were required to press either the response
button BA^ or BB^ within 800 milliseconds after stimulus
onset (i.e., two-alternative forced-choice discrimination task).
They were instructed to infer and learn, by trial and error,
different hidden stimulus-response (S-R) mappings.
Feedback on the choice made was given following every re-
sponse. In each of two consecutive task blocks (n = 240 trials
each) participants were presented with six different visual
stimuli, belonging to three hidden conditions that differed re-
garding reward probability. In each block, two stimuli had a
100% Bdeterministic^ S-R mapping. Two stimuli had a
Bprobabilistic^ 80% S-R mapping. Finally, in the Brandom^
S-R mapping, the two stimuli were equally often associated to
each of the two response keys. Each stimulus was presented
40 times. The two different blocks differed in terms of the six
visual stimuli used to avoid learning across them. Trial order
within a block, as well as order of the two blocks, were alter-
nated across participants. The trial structure was as follows: a
fixation cross lasted for 250 ms, followed by a 250-ms blank
screen. The stimulus was then presented for 500 ms, followed
by a blank screen for 300 ms. The response time-window
lasted for 800 ms following stimulus onset and was fixed
(i.e., decisions made with response times shorter than
800 ms did not terminate the event). Five hundred millisec-
onds after response deadline, a performance feedback was
presented for 500 ms. The feedback was provided in the form
of a Dutch written word, appearing in black on a white ho-
mogenous background. The word was Bgoed^ (correct),
Bfout^ (incorrect), or Bte traag^ (too late). The intertrial inter-
val was set constant (500 ms) and corresponded to a blank
screen. Manual responses were recorded using a Cedrus re-
sponse box. Before the testing session, HCs and MDD pa-
tients were asked not to consume any caffeine or nicotine for
a period of at least 2 hours. To get acquainted with the task,
they completed a short practice session of 20 trials with an
extra set of stimuli. Thewhole experiment lasted approximate-
ly 2 hours (Bakic et al., 2017).

1 Benzodiazepines were mostly prescribed as sleepingmedication, and only in
case of ongoing therapy. Possible influence of this medication on approach-
motivation or RL is not documented. To note, clear frontal alpha asymmetry
was previously reported in a sample of depressed patients under antidepressant
medication, including lorazepam (Debener et al., 2000). Benzodiazepines ad-
ministration might influence Bliking^ reactions, more than motivational as-
pects (Bwanting^) of the reward system (Berridge, Robinson, & Aldridge,
2009).
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EEG data recording, reduction and statistical analyses

EEG recording and preprocessing

Continuous EEGwas recorded during the task and sampled at
512 Hz using a BioSemi ActiveTwo system, with Common
Mode Sense (CMS) active electrode and Driven Right Leg
(DLR) passive electrode serving as ground for internal gain
scaling (www.biosemi.com). A 64 channel cap, 4 periocular
electrodes (above and below left eye and on left and right
cantus), and 2 electrodes on the mastoids were used. The
EEG signal was referenced offline to the averaged mastoids
and filtered offline with a high-pass 0.5 Hz and low-pass
45 Hz FIR filters. All data processing was conducted in
MATLAB (R2013; The MathWorks Inc., Natick, MA) using
EEGLAB (Delorme & Makeig, 2004) and custom scripts.

An independent component analysis was run on the con-
tinuous data. Individual epochs were then extracted around the
response onset (-1.9 to 2.0 sec) and FB onset (−2.4 to 1.5 sec),
and the pre-time-locking event baseline was subtracted (−200
to 0). Artefactual ICA components were selected focusing on
eye artifacts and spatial or temporal discontinuities and were
removed from both the FB-locked and response-locked
datasets. A final dataset-wise rejection of residual epochs with
artifacts was conducted by means of extreme values identifi-
cation (±100 μV cutoff, in a −1,900 to 600 ms time window)
and visual inspection. Trials containing late responses, ab-
sence of response, or double response (both A and B button
presses) were discarded from all analyses. For the probabilis-
tic condition (80% feedback validity condition), trials contain-
ing unexpected feedback (i.e., 20% of trials with an inverted
S-R mapping) also were removed (Bakic et al., 2014). For
each dataset (response or FB), clean epochs were grouped
according to the six main conditions derived by crossing the
factors Breward probability^ (three levels) and Baccuracy^

(correct or incorrect response; positive or negative FB). To
attenuate signal to noise ratio (SNR) differences between con-
ditions, for each subject and dataset, conditions were balanced
according to their average trial count: when a condition’s
count exceeded this value, a subset of epochs corresponding
to this average was randomly selected. The epochs retained
were included in the following analyses (individual mean and
SD across conditions and datasets: HCs = 52.1, 16.9; MDD =
48.8, 16.7. See Suppl. Table 1 for the condition-specific trial
number).

Time-frequency analysis

The time-frequency decomposition was conducted using
EEGLAB built-in std_ersp() function, based on complex
Morlet wavelet convolution (1.6–9.85 cycles, 1.3-40 Hz, 75
log spaced frequencies, 200 timepoints), in which the complex
power spectrum of the single-trial EEG time series (obtained
from FFT) was multiplied by the complex power spectrum of
a family of complex Morlet wavelets, and then the inverse
Fourier transform was taken (Cohen, 2014; van de Vijver
et al., 2014). After convolution of the wavelets with the
EEG, power was defined as the modulus of the resulting com-
plex signal. The convolution was performed separately on
feedback-locked and response-locked data. Feedback-locked
and response-locked power time series were epoch-wise nor-
malized dividing by the pre-stimulus baseline power, and
decibel (dB) converted (10*log10[power/baseline]). The base-
line interval used for the normalization was defined within the
pre-stimulus interval with a fixed range for feedback-locked
epochs (−1,700 to −1,500 ms pre-FB, equal to −400 to
−200 ms prestimulus) and a varying range for the response-
locked epochs (−1,100 to −900 ms pre-response, equal to
around −650 to −450 ms prestimulus given an average re-
sponse time of ~450 ms). The baseline for the response-

Fig. 1 (Top) Trial structure. (Bottom) The experiment consisted of two
consecutive task blocks, each including 6 different stimuli that were each
repeated 40 times. On each and every trial, participants were asked to
perform a two-alternative forced choice task (was the stimulus associated

with response BA^ or BB^?), within a 800-ms time limit. Unbeknown to
them, these 6 stimuli were assigned to different reward probabilities (de-
terministic, probabilistic, or random)
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locked epochs ensured that this range did not extend over
−100 ms before the stimulus presentation, even when consid-
ering the longest possible response time (800 ms).

Time windows and channel location were based on the
theta-band maximal power from the grand average of all con-
ditions (Fig. 2). Specifically, maximum values were reached at
prefrontal scalp locations along the midline (Fz & FCz), in
agreement with the existing RL and cognitive control litera-
ture (Cavanagh et al., 2010; Nigbur, Cohen, Ridderinkhof, &
Stürmer, 2012; van de Vijver et al., 2014). As shown in Fig.
2a, FMT power increased before the response and extended
until approximately 200 ms after it, whereas it peaked approx-
imately 400 ms after the feedback (Fig. 2b). To note, previous
studies on FMT and action monitoring showed that an early
FMT power burst preceding the response onset is usually
expressed for both correct and incorrect responses (this
comparison is shown in Supplementary Fig. 1; see also
Cavanagh, Cohen, & Allen, 2009; van de Vijver et al.,
2014), whereas only incorrect responses elicit strong post-
response FMT activity (Fig. 2c). This pattern aligns well with
the assumption that FMT reflects to some extent prediction
error in case of response error. In line with these previous
studies, FMT power was extracted in the 200-ms timewindow
following response onset.

Oscillatory dynamics may be influenced by individual
characteristics (i.e., age and clinical status). For this reason,
we identified the frequency with maximal power for each
subject in a window ranging 3.5 to 8 Hz, and from 300 to
500 ms after FB onset (from the channels Fz & FCz). Peak
frequencies were close to the canonical Theta lower boundary
(4 Hz) for the two groups alike (HC: mean = 4.20 Hz, SD =
0.94;MDD:mean = 4.21Hz, SD = 0.98), thus we set the FMT
frequency range from 3 to 7 Hz in all subsequent analyses, for
both groups. For these reasons, FMT power changes (3–7 Hz)
were defined as the mean computed within 0 to 200 ms and
300 to 500 ms after the response or FB respectively, and
across channels Fz and FCz.

We further divided FMT power in the induced (non-phase-
locked) and evoked (phase-locked) components to isolate os-
cillatory dynamics from time/frequency changes driven by
ERPs. For this, we first computed the individual ERPs for
each condition, time-locked to the response or the FB event.
Second, the conditional ERP was subtracted from each single
EEG epoch belonging to the relative condition. Third, the
convolution and normalization procedure described above
was repeated to obtain the induced FMT. The evoked power
was derived by subtracting the induced from the total power
(Cohen, 2014).

Fig. 2 Induced power. (a) Time-frequency decomposition (whole spec-
trum) at electrodes Fz and FCz (combined) for HCs (average of all three
reward probabilities and two accuracy conditions) when considering the
response level, and revealing a clear increase in FMT power (3–7 Hz)
peaking approximately 100 ms before response onset and extending until
approximately 200 ms after it. (b) Same analysis performed when con-
sidering the FB, and showing a FMT power increase occurring 300–500
ms after FB onset. This interval was used to extract FMT power for the

FB. (c) Horizontal scalp topographies of FMT power for the response (0–
200ms), showing a clear FMT increase (when collapsing the three reward
probabilities) at prefrontal electrodes along the midline (Fz & FCz) for
incorrect compared with correct responses. (d) Horizontal scalp topogra-
phies of FMT power for the FB (300–500 ms), showing a clear FMT
increase (when collapsing the three reward probabilities) at prefrontal
electrodes along the midline (Fz & FCz) for negative (incorrect) com-
pared with positive (correct) feedback
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Frontal alpha-asymmetry

All cleaned FB-locked epochs were included in this anal-
ysis, merging reward probability and accuracy factors.
Whereas frontal alpha asymmetry is often computed using
resting state EEG recordings, we analyzed it using active
task data, because it has been shown that emotionally or
motivationally relevant states may produce more robust
individual differences than resting state data (i.e.,
response capability model, see Allen & Reznik, 2015;
Coan et al., 2006). Using this framework, MDD impair-
ments in approach-motivation may emerge as a lateralized
state response while approaching the FB. The segmented
EEG data were converted to the scalp Laplacian (Kayser
& Tenke, 2006), a reference-free current sources density
estimation, to increase spatial selectivity and to minimize
volume conduction. Because the Laplacian attenuates the
contribution of distal volume-conducted sources (e.g., the
occipital cortex and deep sources), it highlights the con-
tribution of local electrode activities and radial dipoles
(Perrin, Pernier, Bertrand, & Echallier, 1989; Smith,
Reznik, et al., 2017), thus improving the topographical
localization of surface EEG signals. We computed the
power spectral density (PSD) applying a fast Fourier
transform (FFT) on the task data (spectopo() function),
obtaining a dB converted estimation of relative power in
a range of frequencies, with unit 10*log10(uV

2/Hz). The
FFT transform was applied to each epoch in a single 1-
second segment (−100 to 900 ms relative to the FB)
weighted with a Hamming window (512-point window
length given a sampling rate of 512 Hz). The resulting
PSD values were averaged across epochs for each subject
and channel. Alpha power was defined as the average in
the 8–13-Hz range.

We further adopted a stringent standardization proce-
dure that controls for individual variability in the band-
power estimation. For each subject, normalized single-
site Alpha power values were computed by dividing the
power at each channel by the summed power across all
channels; then, these ratios were transformed in Z scores,
normalizing over all electrodes (Smith, Reznik, et al.,
2017). This procedure allows to control for individual
nuisance variable, such as scalp thickness and overall
global power, providing a metric suited for exploring
each homologous site’s contribution to the lateralization,
as well as correlations with criterion variables (e.g., clin-
ical scales).

Statistical analyses

At the behavioral level, learning was expressed as per-
centage of correct responses varying as a function of time,
using four consecutive bins of trials ( Bakic et al., 2017).

We compared the learning performance between MDD
patients and HCs by means of a mixed-design ANOVA
with reward probability and bin as within-subject factors,
as well as group as between-subject factor. We also ana-
lyzed the effects of group and reward probability on re-
action times (RT) for correct responses, as well as the
amount of Btoo late^ responses, by means of mixed-
design ANOVAs.

At the electrophysiological level, we analyzed FMT power
changes at the response and FB levels separately, and we
compared MDD patients to HCs by means of a mixed-
design ANOVA with accuracy and reward probability as
within-subject factor, as well as group as between-subjects
factor. Follow-up statistical analyses on the evolution of
FMT power across successive trials were performed using
Bayesian Multilevel Models (BMLM), implemented in R (R
Core Team, 2017) with the Bbrms^ package (Bürkner, 2017;
Nalborczyk, Batailler, Loevenbruck, Vilain, & Bürkner, in
press).

Alpha asymmetry was assessed considering the nor-
malized Alpha power at typical frontal sites (F4 & F3).
We included in the analysis parietal sites (P4 & P3) to
establish the specificity of the effect for the frontal region.
We compared frontal Alpha asymmetry for MDD patients
to HC by means of a mixed-design ANOVA with region
(frontal or parietal) and hemisphere (right or left) as
within-subject factor and group as between-subjects fac-
tor. To assess the spatial localization of the frontal alpha
asymmetry effect found with the first analysis, we per-
formed a second analysis where we used an extended
array of frontal homologous pairs (F2 & F1, F4 & F3,
F6 & F5, F8 & F7). For this analysis, we used a mixed-
design ANOVA with pair and hemisphere as within-
subject factor and group as between-subjects factor.
Last, we assessed the reliability of task-related Alpha
asymmetry by means of split-half correlations. For either
the HC or MDD group, we split the dataset according to
odd and even trials (accuracy and probability conditions
being balanced) and computed asymmetry scores between
a set of frontal and parietal sites (F2-F1, F4-F3, F6-F5,
F8-F7, P4-P3). Based on the raw Alpha power (without
normalization), the asymmetry score was defined as the
difference between the right-site and the left-site PSD
(i.e., 10*log10[Right] – 10*log10[Left]), with higher
values on this index putatively reflecting relatively greater
left activity (i.e., relatively greater right alpha). Pearson’s
product-moment correlation coefficients were calculated
between asymmetry scores derived by either odd or even
trials, for each location and group.

For all the analyses, the Greenhouse-Geisser procedure
was adopted to correct the degrees of freedom when the sphe-
ricity was violated. For post-hoc pairwise comparisons, a
Bonferroni correction was used.
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Results

Clinical and behavioral data

As shown in Table 1, MDD patients had significantly
higher depression scores (on all scales used) than HCs at
baseline. Behavioral task data confirmed that for HCs,
learning was influenced by time and reward probability,
as expected (Bakic et al., 2014; Eppinger et al., 2008).
More specifically, learning was steep and the highest for
the deterministic condition, intermediate for the probabilis-
tic condition, and absent for the random one. MDD pa-
tients exhibited the same learning profile (Fig. 2).
Comparing MDD patients with HCs, the ANOVA failed
to evidence a significant group x reward probability x bin
[F(4.59,303.21) = 0.327, p = 0.883, η2p = 0.005] or group
x reward probability interaction [F(2,132) = 0.297, p =
0.744, η2p = 0.004], or main effect of group [F(1,66) =
0.771, p = 0.383, η2p = 0.012], whereas the reward prob-
abi l i ty x bin interac t ion was highly s igni f icant
[F(4.59,303.21) = 29.229, p < 0.001, η2p = 0.307] and
unambiguously translated improved behavioral perfor-
mance across time when reward probability increased, for
both groups. The analysis for RT speed showed significant
main effects of group [F(1,66) = 6.632, p = 0.012, η2p =
0.091] and reward probability [F(2,132) = 7.511, p <
0.001, η2p = 0.102], indicating overall slower responses
for MDD patients than HCs, as well as faster RTs when
reward probability increased (Fig. 3b). For each condition,
the number of Btoo late^ responses was modest, yet larger
for MDD patients (mean = 4.10, SE = 0.36) than HCs
(mean = 2.96, SE = 0.24) [F(1,66) = 6.971, p = 0.010,
η2p = 0.096], and varied across the three reward probabil-
ity conditions [F(1.83,121.06) = 7.981, p < 0.001, η2p =
0.106], increasing when reward probability decreased. We
also used computational modeling to extract alternative
indices of learning, including the learning rate and an ex-
ploration parameter (Jepma & Nieuwenhuis, 2011), but
failed to observe group differences for them. A significant-
ly lower amount of switches after negative FB for MDD
patients compared with HCs was observed only during the
second part of the experiment (bins 3 and 4; see Bakic
et al., 2017 for details regarding these analyses).

Fronto-midline Theta

As shown in Fig. 4, most of the total FMT power reflected the
modulation of ongoing theta-band oscillations that occurred
during the response or the FB but was not phase-locked to
them (i.e., induced). Thus, we focused our analyses on the
induced FMT only, that is the time-frequency representation
in the Theta band of EEG dynamics that are task-related (i.e.,

relative to the prestimulus baseline) but do not contribute to
ERPs.2

Induced FMT oscillatory activity was analyzed separately
at the response and FB levels to ascertain that reward proba-
bility influenced these two levels in opposite directions.
Importantly, we assessed whether abnormal RL in MDD pa-
tients was evidenced by systematic changes in FMT power,
depending on reward probability and the level at which this
information was processed (either response or feedback level).
More specifically, we expected a larger group difference at the
FB level when reward probability was low compared with
high, due to a deficient sustained exploration of the FB in
MDD. At the response level, the main effect of reward-
probability was significant [F(2,132) = 3.40, p = 0.036, η2p
= 0.049], as well as the main effect of accuracy [F(1,66) =
26.42, p < 0.001, η2p = 0.286]. These main effects were
accounted for by a monotonic decrease of FMT power as a
function of decreasing reward-probability and by higher pow-
er for incorrect compared with correct responses, for the two
groups alike (Fig. 6a). Moreover, reward probability
interacted with accuracy [F(2,132) = 10.74, p < 0.001, η2p
= 0.140], indicating that the monotonic power decrease along
decreasing probabilities was evidenced for incorrect responses

Table 1 Demographic and clinical data for HCs and MDD patients
(means are provided together with the standard deviations in
parenthesis). Independent samples t-tests for BDI II (df = 64),
Anhedonia subscale of BDI II (df = 64), HAM D (df = 66), SHAPS (df
= 66), and TEPS (df = 66), with the corresponding subscales (dfs = 66).
Note that due to some missing data, the degrees of freedom (df) were
different for the BDI II scale. *Corresponds to p < 0.05, whereas ** to p <
0.01

HC MDD t

Number 34 34

Gender (F/M) 27/7 27/7

Age 36.21 (11.66) 42.68 (11.69) -2.29*

BDI_II 4.26 (4.39) 31.81 (9.23) -15.63**

Anhedonia 0.76 (1.05) 5.13 (2.15) -10.57**

HAM_D 1,18 (2,04) 21.47 (5,29) -20,87**

SHAPS 0.59 (2.41) 7.21 (4.10) -8.11**

TEPS 79.12 (8.34) 59.45 (13.22) 7.34**

Consumatory 37.62 (5.11) 29.37 (7.37) 5.36**

Anticipatory 41.50 (5.63) 30.08 (7.47) 7.12**

*p < 0.05; **p < 0.01

2 The choice of analyzing the induced component of FMTwas not motivated
by a different physiological interpretation for the induced vs. evoked compo-
nent of the signal (see Donner and Siegel, 2011; Gray and Singer, 1989;
Tallon-Baudry and Bertrand, 1999). Rather, it was based on a previous EEG
study linking the induced FMT to behavioral adaptation (Cohen & Donner,
2013), as well as our goal to supplement the standard ERP data analysis
(presented elsewhere, see Bakic et al., 2017) with time-frequency decomposi-
tions for which the specific contribution of the evoked/ERP component was
removed.
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only [linear contrast: F(1,66) = 21.04, p < 0.001, η2p = 0.242].
For correct responses, FMT power followed the opposite trend
[linear contrast: F(1,66) = 4.00, p = 0.050, η2p = 0.057]. In
addition, FMT power differed between correct and incorrect
responses only for the probabilistic (80%) [F(1,66) = 9.41, p =
0.003, η2p = 0.125] and deterministic (100%) [F(1,66) =
35,60, p < 0.001, η2p = 0.350] conditions; this difference
was not significant for the random (50%) condition [F(1,66)
= 0,19, p = 0.663, η2p = 0.072]. Interestingly, this analysis
also showed a significant interaction between group and ac-
curacy [F(1,66) = 6.35, p = 0.014, η2p = 0.088], indicating a
clearer separation between correct and incorrect responses for
HCs [F(1,66) = 29.34, p < 0.001, η2p = 0.308] than MDD
patients [F(1,66) = 3.43, p = 0.068, η2p = 0.049], who in turn
showed a trend for stronger FMT power after correct re-
sponses compared with HCs [F(1,66) = 3.38, p = 0.070, η2p

= 0.049]. The main effect of group [F(1,66) = 0.46, p = 0.500,
η2p = 0.007], interaction between group and reward probabil-
ity [F(2,132) = 0.09, p = 0.918, η2p = 0.001], or the three-way
interaction [F(2,132) = 0.42, p = 0.659, η2p = 0.006] were all
nonsignificant. At the feedback level, the ANOVA showed
significant main effects of accuracy [F(1,66) = 18.79, p <
0.001, η2p = 0.222] and reward-probability [F(1.83,120.99)
= 11.06, p < 0.001, η2p = 0.144]. Negative FB elicited stron-
ger FMT power than positive one, whereas a symmetric effect
of reward probability (relative to the response level) was
found: FMT power monotonically increased with decreasing
reward-probability (Figs. 5 and 6). Unlike what we found at
the response level, we did not observe a significant interaction
between accuracy and reward probability [F(1.74,115.02) =
0.01, p = 0.989, η2p = 0.000] or between accuracy and group
[F(1,66) = 1.13, p = 0.292, η2p = 0.017] at the feedback level.

Fig. 4 (a) Boxplot analysis showing for each level separately (either
response or FB), the proportion of total, induced and evoked FMT
power changes for HCs. These FMT power changes correspond to the
average of the two response accuracies and three probability conditions.
The bold horizontal line represents the median, the box represents the
interquartile range, and the whiskers extend to the last data point within
1.5 times the interquartile range. Additional solid black symbols indicate

the mean. This analysis shows that irrespective of the level considered,
the induced (non-phase-locked) component of FMT accounted for most
of the total FMT. By comparison, the evoked FMT (phase-locked – cap-
tured by ERPs) reflected a much smaller portion. This difference indicates
a larger contribution of non-phase-locked than phase-locked responses
(ERPs) to FMT power after both response and FB. (b) The same pattern
was seen in MDD patients

Fig. 3 Behavioral results. (a) Accuracy data (i.e., proportion of correct
responses) decomposed as a function of bin, condition and group. Each
bin corresponds to the average of 40 trials (20 consecutive trials per

condition for each of the 2 task blocks). (b) Response latencies (for
correct responses) decomposed as a function of group and reward
probability. The error bar corresponds to 1 standard error of the mean
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The main effect of group approached significance [F(1,66) =
2.82, p = 0.098, η2p = 0.041], reflecting a trend for a generally
reduced FMT power across all conditions in MDD patients
compared with HCs. Likewise, the interaction between group
and reward probability was trend significant only
[F(1.83,120.99) = 2.37, p = 0.102, η2p = 0.035]. The three-

way interaction was not significant [F(1.74,115.02) = 0.87, p
= 0.407, η2p = 0.013].

To assess whether MDD patients showed a drop in moti-
vation to decipher the most complex S-R associations (ran-
dom condition) based on the feedback information, as the
trend significant interaction between group and reward

Fig. 5 (a) FMT (3-7 Hz) power at electrodes Fz and FCz (combined) for
HCs (n = 34), separately for incorrect response (0–200 ms after its onset)
and negative feedback (300–500 ms after its onset) and for each reward
probability apart. Superimposed on each plot, the corresponding
horizontal scalp topography is presented. (b) Same analysis for MDD
patients (n = 34). For both groups, FMT power varied with reward

probability but in opposing directions for incorrect response and negative
FB: it increased with increasing reward probability at the response level
while showing the opposite effect at the FB level. At the FB level, FMT
power was reduced forMDDpatients compared to HCs, especially for the
low reward probability condition

Fig. 6 The boxplots show FMT power (3-7 Hz) recorded at electrodes Fz
and FCz (combined) separately for the response (a) and the FB (b) levels,
and for each accuracy level and reward probability. The two groups are
coded with different shades of grey. The horizontal line represents the
median, the box represents the interquartile range, and the whiskers

extend to the last data point within 1.5 times the interquartile range.
The black points indicate the outliers. Superimposed in white, the dia-
mond symbols indicate the mean and the extending ranges cover the 95%
confidence intervals
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probability indirectly suggested (see above), we performed a
follow-up analysis where we extracted FMT power changes at
the single-trial level (random condition) and modeled their
evolution across successive trials. We reasoned that if MDD
patients showed a drop inmotivation, then FMT power should
decrease in a steeper manner across trials for them in this
condition, relative to the HCs. Relying on a Bayesian multi-
level model analysis, we assessed the amount of evidence in
favor of this specific hypothesis. The methodological and sta-
tistical details of this single-trial analysis are provided in the
Supplementary Materials section. Figure 7a shows the out-
come of this analysis and is based on the model that best fit
the observed data. This model included the main effects of
time, accuracy, group, and their interactions (see
Supplementary Materials). Based on this model, we examined
the difference between the probability distributions of the con-
ditions of interest. Statistical results showed that for positive
FB, the hypothesis of a steeper decrease of FMT power across
time for MDD patients than HCs was 4.1 times more likely
than the alternative one, predicting an opposite effect. For
negative FB, results showed that it was 34.7 times more likely
that FMT power decreased across trials more sharply for
MDD patients than HCs compared with the opposite hypoth-
esis. Last, the hypothesis that the group difference in the

steepness of the slope was larger for negative than positive
FB was 3.2 times more likely than the opposite one. Thus, this
single trial analysis provided strong evidence in favor of the
hypothesis that FMT power for negative FB decreased more
sharply across trials for MDD patients than HCs, as well as
some evidence that this effect was larger for negative com-
pared with positive FB.

Frontal alpha-asymmetry

To examine possible anomalies in approach motivation in
MDD patients, we compared frontal alpha asymmetry (feed-
back level) between them and HCs. The ANOVA comparing
frontal and parietal normalized Alpha power showed a signif-
icant two way interaction between hemisphere and group
[F(1,66) = 4.90, p = 0.030, η2p = 0.069]. Post-hoc compari-
son revealed a significant effect of hemisphere for the MDD
group only [F(1,66) = 4.84, p = 0.031, η2p = 0.068] translat-
ing a negative Alpha asymmetry index (left: mean = 0.103, SE
= 0.145; right: mean = −0.316, SE = 0.105). Importantly, this
effect also was qualified by a significant interaction with re-
gion [F(1,66) = 4.63, p = 0.035, η2p = 0.066]. Post-hoc com-
parisons revealed a significant effect of hemisphere for frontal
sites in the MDD group exclusively F(1,66) = 5.56, p = 0.021,

Fig. 7 Temporal evolution of FMT power (FB level) across consecutive
trials, for the 50% (random) probability condition. (a) Results of the
Bayesian multilevel modeling. The figure represents the population-
level marginal effects of the predictors time, accuracy, and group on the
estimated FMT power. These estimates are based on the model that best
fit the observed data (see Supplementary Materials). The lines represent
the mean of posterior probability samples at each second from the begin-
ning of the task blocks and for each condition. The shading represent the

95% credible interval around them. (b) For a comparison to the observed
data, the horizontal scalp topographies show FMT power for the FB
(300–500 ms), for each accuracy level and group. To represent roughly
the effect of time, FMT power was computed separately for the first and
second bin of trials, considering all trials available for each subject. This
was done for each block separately, before FMT power for the two blocks
was collapsed
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η2p = 0.078], expressed as a negative asymmetry index (cor-
responding to relatively higher left than right alpha power,
thus translating a relatively lower left than right frontal acti-
vation; left: mean = 0.343, SE = 0.220; right: mean = −0.345,
SE = 0.163) (Fig. 8). With regard to the HC group, the effect
of hemisphere did not reach significance, although showed the
opposite trend at the frontal region (left mean = −0.133, SE =
0.220, right mean = 0.260, SE = 0.163).

Moreover, in an additional analysis we considered an ex-
tended array of frontal electrodes on both sides (F2 & F1, F4
& F3, F6 & F5, F8 & F7) to assess whether frontal alpha
asymmetry was circumscribed to a few isolated locations.
The ANOVA comparing normalized Alpha power across
frontal pairs showed a significant main effect of pair
[F(2.29,150.90) = 50.79, p < 0.001, η2p = 0.435]. This main
effect was accounted for by a linear increase of Alpha power
frommedial to lateral pairs [F(1,66) = 94.21, p < 0.001, η2p =
0.588]. Interestingly, the ANOVA showed also a significant
three-way interaction between pair, hemisphere, and group
[F(2.01,132.51) = 4.43, p = 0.014, η2p = 0.063]. Post-hoc
comparison revealed a significant effect of hemisphere in the
MDD group and for the second pair selectively (F4 & F3; F4:
mean = −0.345, SE = 0.163; F3: mean = 0.343, SE = 0.220;
[F(1,66) = 5.56, p = 0.021, η2p = 0.078]).

Finally, the split-half correlations indicated a strong reli-
ability of Alpha asymmetry, translating a stable topographic
distribution of Alpha power across different trials. For each
site considered (F2-F1, F4-F3, F6-F5, F8-F7, P4-P3), the
Alpha asymmetry score was highly correlated between odd
and even trials, for both groups (HC range: r = 0.987 –
0.997, N = 34; MDD range: r = 0.933 – 0.995, N = 34).

Last, we also performed exploratory correlation analyses
between the symptomatology or severity of depression and
these electrophysiological measures, as well as between
FMTand frontal Alpha power (see Supplementary Materials).

Discussion

Previous research in behavioral neuroscience, neuroimaging,
and psychiatry demonstrated that dysfunctions in fronto-
striatal reward systems (i.e., Anhedonia, in combination with
exaggerated stress responsiveness) play a central role in the
etiology and maintenance of MDD (for a review, see
Pizzagalli, 2014). Besides strong impairments in reward sen-
sitivity (Bress et al., 2012; Foti, Carlson, Sauder, & Proudfit,
2014; Weinberg, Liu, Hajcak, & Shankman, 2015), abnormal
reward anticipation and motivation are cardinal features of

Fig. 8 (a) Frontal alpha asymmetry results, separately for HCs andMDD
patients. (b) Parietal alpha asymmetry results for comparison purposes.
Histograms represent mean alpha power for left (F3, P3) and right (F4,
P4) channels, whereas the horizontal line bar reflects the mean asymmetry
score (for each group) computed as the right- minus left-channel differ-
ence. The dots represent the subject-specific asymmetry scores. The error
bar corresponds to 1 standard error of the mean. Note that both

asymmetry scores and the alpha power at single channels refer to alpha
power (with original unit 10*log10(uV

2/Hz)) converted to Z scores by
means of a within-subject topographical normalization. (c) Horizontal
scalp topographies of alpha power (z scores), separately for HCs and
MDD patients, computed on the Laplacian-filtered data (top) and the
non-filtered data (bottom)

Cogn Affect Behav Neurosci



anhedonia in MDD (i.e., "wanting") (Berridge & Robinson,
2003; Thomsen, 2015; Treadway& Zald, 2011), which in turn
undermine the possibility to optimize behavior (learning) as a
function of reward in these patients (Pizzagalli et al., 2008;
Vrieze et al., 2013; Whitton et al., 2016). Such impairments
should be visible during RL, where learning performance crit-
ically depends on the use, evaluation, and exploration of spe-
cific incentives. In the present study, we sought to lend addi-
tional support to this dominant framework by comparing the
neurophysiological correlates of RL and approach-related mo-
tivation between MDD patients and matched HCs. Therefore,
we tested a large cohort of treatment-resistant MDD patients
(enrolled in a treatment study, see Duprat et al., 2016) and
compared them to healthy, matched controls on a standard
probabilistic learning task (Eppinger et al., 2008). We ex-
plored systematic changes of FMT oscillations as a function
of reward probability, separately for the response (internal
monitoring) and feedback level (external monitoring). FMT
provides a reliable electrophysiological correlate of perfor-
mance monitoring, putatively mediating the impact of RPE
on behavioral adaptation and learning (Cavanagh et al.,
2010; Cohen et al., 2008, 2011; E. H. Smith et al., 2015; van
de Vijver et al., 2014). Interestingly, FMT has been proposed
to signal the amount of control to be allocated over perfor-
mance during extended and cognitive demanding tasks
(Holroyd & Umemoto, 2016), but very few studies to date
have evaluated systematically whether MDD could influence
it during RL (Cavanagh, Bismark, Frank, & Allen, 2011).3

Moreover, to examine possible group differences in approach
motivation, we also extracted hemispheric frontal alpha asym-
metry, measured throughout the task as a state response, and
using the most recent methodological recommendations for
this metric, including Laplacian transformation and a stringent
normalization procedure (Allen & Reznik, 2015; E. E. Smith,
Reznik, et al., 2017; Stewart et al., 2014).

The present results do not support the assumption that an-
hedonia in MDD entails impaired RL, because we failed to
observe clear-cut deficits in RL at the behavioral and EEG
(FMT) levels in a large sample of MDD patients characterized
by high levels of anhedonia. However, these results show that
MDD and anhedonia are accompanied by deficits in approach
motivation, as suggested by frontal alpha asymmetry as well as

by a steep FMT power decrease across successive trials when
considering the most challenging RL condition. In fact, despite
being classified as at least stage I treatment resistant (Fava,
2003) and showing a high depression’s severity as well as clear
Anhedonia (both consummatory and anticipatory; Table 1),
these patients actually showed globally spared RL processes
(Fig. 3a). Learning was titrated at the behavioral level using
either standard accuracymeasures (Bakic et al., 2014; Eppinger
et al., 2008) or alternative indices deriving from computational
modeling, such as learning rate or exploration (Bakic et al.,
2017). The two groups showed comparable RL-based effects
for these different measures. The only exception was the rate of
switches after negative FB, which was significantly lower for
these MDD patients compared with the HCs during the second
part of the experiment (bins 3 and 4), selectively (Bakic et al.,
2017). This result suggested indirectly a possible drop in mo-
tivation and exploration across time in these MDD patients.

At the EEG level, FMT power was higher for incorrect than
correct responses, and for negative than positive FB, as previ-
ously reported (Cavanagh, Figueroa, et al., 2012; Cavanagh
et al., 2010; van de Vijver et al., 2014). As expected (van de
Vijver et al., 2014), FMT power modulation strongly
depended on reward probability and was symmetrical be-
tween incorrect responses and negative FB (Figs. 5 and 6).
When the S-R was deterministic, FMT power was the largest
for incorrect response. Conversely, when the S-Rwas random,
FMT power was the largest for negative FB, confirming the
sensitivity of this neurophysiological signal to reward-based
learning. This neurophysiological effect aligns with the be-
havioral results showing that RL varied with reward probabil-
ity. When learning was easy (deterministic S-R association),
participants likely processed response errors at the response
level on most trials, without the need to rely on the subsequent
feedback to infer accuracy. By comparison, when it was hard
or even impossible (probabilistic and random S-R associa-
tions, respectively), participants had to use actively the eval-
uative FB to infer accuracy, whereas evidence accumulated at
the response level was probably too weak or absent. Hence,
the corresponding effects on FMT power captured prediction
errors and/or enhanced cognitive control in accordance with
RL dynamics. Interestingly, only response errors, but not cor-
rect responses, elicited a large FMT power that decreased
systematically with decreasing reward probability. At the FB
level, both positive and negative FB showed a symmetric
pattern compared to the response level, suggesting that FMT
may reflect an unsigned prediction error signal. In fact, ac-
cording to some authors (Cavanagh, Figueroa, et al., 2012;
Hajihosseini & Holroyd, 2013), FMTcannot reflect an axiom-
atic RPE coded by dopamine neurons, because it does not
show an interactive effect between reward and expectancy
(Caplin and Dean, 2008). Rather, it is mainly modulated by
the (un)predictability of events in general, and it could reflect
the amount of effort or control to be exerted as a result

3 Other studies already used in the past advanced time/frequency methods to
evaluate FB processing in healthy and clinical populations, yet focusing on the
phase-locked component of the EEG signal mostly (i.e., extracting power
changes in specific bands after epochs averaging) in an attempt to parse the
differential contribution of overlapping ERP components to the ERP power
spectrum (Bernat, Nelson, & Baskin-Sommers, 2015; Bernat, Nelson, Steele,
Gehring, & Patrick, 2011; Foti, Weinberg, Bernat, & Proudfit, 2015). Here, we
used a very different approach and data analysis, where we purposely removed
the ERP activity from the original EEG signal and used a time-frequency
decomposition performed at the single trial level (Cohen, 2014; Cohen &
Donner, 2013) with the aim to explore the contribution of non-phase-locked
activity to power changes (in the theta band) as a function of reward probabil-
ity and MDD.
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(output) of information processed by the ACC (including RPE
signals), where the subjective value of the task might be esti-
mated (Holroyd and Umemoto, 2016; Smith et al., 2015). In
this scenario, the symmetric change in FMT power seen in our
study between the response and FB levels across the three
reward probability conditions could be explained by explicit
predictions about performance (model-based reward learning;
Dayan & Berridge, 2014), being initially made and eventually
violated: if the S-R association was deterministic, onmost trials
a positive prediction could readily be computed at the response
level, and be violated in case of response error. Instead, if the S-
R association was probabilistic or random, the evaluative FB
provided after the choice was respectively the main or only cue
to gauge violations of prediction (in either direction).

Intriguingly, these effects were generally spared in MDD,
disconfirming one of our main hypotheses. However, FMT
power was slightly different between the two groups. At the
response level, MDD patients showed only smaller differ-
ences in FMT power between correct and incorrect responses
compared with HCs (Fig. 6a; Suppl. Fig. 1). Specifically,
compared with HCs, MDD patients showed an overall in-
crease of FMT for correct responses, which may translate
increased uncertainty at the response level (i.e., increased re-
sponse conflict). When considering the FB level, both HCs
and MDDs showed a symmetric pattern in FMT power mod-
ulation as a function of reward probability relative to the re-
sponse level. Interestingly, MDD patients showed a numeri-
cally blunted FMT power modulation at the FB level, espe-
cially when reward probability was low (and hence the hidden
S-R mapping was hard to discover), although we failed to
evidence a significant interaction effect between group and
reward probability. Crucially, robust evidence for a group dif-
ference in this condition was provided by a follow-up analysis
where we could model the evolution of FMT power across
successive trials. As shown in Fig. 7, this group difference was
expressed at the FB level in terms of a steeper decrease (slope)
of FMT power as a function of time for MDD patients com-
pared with HCs and not simply as impaired discrimination of
the evaluative FB as being positive or negative (i.e., both
groups showed a different intercept at time 0; see also Suppl.
Fig. 5). Furthermore, this decrease of FMT power across suc-
cessive trials was larger for negative compared with positive
FB. These results suggest that both groups showed strong
FMT power activity at the beginning of the task, but unlike
MDD patients, HCs maintained enhanced cognitive control
across time in response to FB, despite its low reward value
in this condition. To note, in this condition learning was made
impossible by design. Consequently, this drop shown by
MDD patients at the neurophysiological level could not be
accompanied by an impaired behavioral performance, relative
to the HCs. As such, these FMT results corroborate to some
degree the assumption that MDD likely interferes with specif-
ic motivation processes active during reward-based learning,

as if it impaired selectively the involvement of extra efforts or
resources necessary to yield learning in a complex situation
where stimuli and responses carry low reward values
(Pizzagalli et al., 2005; Salamone, Correa, Farrar, &
Mingote, 2007; Thomsen, 2015; Treadway et al., 2012).

When considering specific motivation processes reflected
by frontal Alpha asymmetry (as measured throughout the task
as a state response to the FB; Fig. 8), the results were clearer
and showed a negative frontal Alpha asymmetry for MDD
patients only, when considering the F3-F4 pair selectively.
This asymmetry was expressed by positive normalized Alpha
power for the left frontal site (F3), but negative Alpha power
for the right frontal site (F4), relative to the average Alpha
activity measured across the entire scalp. By comparison,
HCs did not show this asymmetry but actually an opposite
pattern. This clear group difference in lateralized frontal activ-
ity is consistent with the assumption of abnormal approach-
related motivation in MDD (Eddie Harmon-Jones & Gable,
2017; Nelson et al., 2017; Pizzagalli et al., 2005), expressed
here as a motivational disengagement during FB presentation.
Importantly, this effect was significant at frontal sites only,
confirming a clear regional specificity. Moreover, this state-
response metric of cortical activity was shown to be reliable
and highly consistent across trials, for any site considered.

The observation of globally preserved reward-based learn-
ing at the behavioral (and FMT) level in MDD in our study is
actually in line with some previous results reported in the
literature showing normal learning performance during stan-
dard RL tasks with this emotional disorder (Cavanagh et al.,
2011; Kunisato et al., 2012). To explain this result, three meth-
odological elements are worth considering in the present case.
First, we used a probabilistic learning task (Eppinger et al.,
2008; Frank et al., 2005) based on Bexplicit^ RL. Instructions
clearly emphasized that the task was precisely about discov-
ering different hidden S-R associations across successive trials
and that reward delivery directly depended on the ability to do
so. By comparison, other studies (Pizzagalli et al., 2008;
Whitton et al., 2016) that reported impaired RL in MDD at
the behavioral and neural levels usually used Bimplicit^ task
and reinforcement. In these cases, reward was used to promote
an implicit response bias (i.e., conditioning), while its delivery
was actually decoupled from the task instructions. As a result,
different learning mechanisms are probably involved in these
two situations (Berridge & Robinson, 2003), and MDDmight
influence one of them only or more strongly than the other
(i.e., when an implicit learning task is used primarily to pro-
mote reward-based learning). Second, behavioral impairments
during RL found in MDD might actually depend not only on
the type of RL task used, but also the nature of the reinforcer
used to foster learning. We used so-called Bprimary^ rein-
forcers (correct vs. incorrect response, hence related to self-
efficacy), whereas behavioral impairments seen in MDD pa-
tients during RL in previous studies (see above) were usually
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observed when Bsecondary^ reinforcers, such as small mone-
tary reward, were used. Third, we cannot rule out the possi-
bility that this discrepancy between the present and some pre-
vious studies might be explained by the patients’ characteris-
tics to some extent. Although our sample of MDD patients
was relatively large and homogenous (Table 1), yet these pa-
tients were treatment-resistant, severely anhedonic, and hence
not immediately comparable to MDD patients tested in earlier
studies where different inclusion criteria were used (Cavanagh
et al., 2011; Pizzagalli et al., 2008; Treadway et al., 2012). In
this context, it is conceivable that their treatment resistance,
combined with the fact that they were enrolled in a treatment
study, may have artificially boosted specific motivation pro-
cesses (such as their engagement in the task and willingness to
perform well), eventually explaining why we failed to reveal
clear deficits at the behavioral level during RL in these pa-
tients using this specific probabilistic learning task.

Our results suggest that impaired RL might not be a core
feature of unipolar major depression and anhedonia.
Accordingly, they align with recent neuroscientific evidence in-
dicating that this mood disorder does not impair the main ex-
pression of dopaminergic-related RPE signals (Rutledge et al.,
2017), which underpin RL. In comparison, the abnormal frontal
Alpha asymmetry found in these MDD patients could reflect
motivational deficits, in agreement with many earlier studies
and models available in the extant literature (Allen, Urry, Hitt,
& Coan, 2004; Coan & Allen, 2004; Davidson, 1998b, 2004; E
Harmon-Jones & Allen, 1997). Together, our new findings sug-
gest the existence of two dissociable brain systems supporting
RL: a cognitively driven approach-motivation system, which is
probably impaired in MDD, and a corticostriatal dopaminergic
reward network, which can be globally spared in this specific
mood disorder. However, additional empirical work is needed to
corroborate this conclusion, preferably using imaging methods,
such as fMRI (in combination with EEG), which is appropriate
to determine the respective contribution at the anatomical level
of these two nonoverlapping brain networks to RL, as well as
their differential vulnerability to MDD.

Although the current results await replication in new sam-
ples of MDD patients, they also have indirect clinical implica-
tions. In light of this dissociation outlined above, we surmise
that therapies targeting a restoration of frontal lobe functioning
in treatment resistant MDD patients, such as TMS (Fox,
Buckner,White, Greicius, & Pascual-Leone, 2012) or the com-
bination of neurostimulation with cognitive control training for
example (De Raedt, Vanderhasselt, & Baeken, 2015), as well
as interventions that may alter indirectly EEG asymmetry by
improving motivation, such as cognitive behavior therapy
(Moscovitch et al., 2011), might all help to improve approach
motivation in the first place and subsequently counteract a drop
in the sustained exploration of low reward cues in the environ-
ment. Accordingly, it would be valuable in future studies to
compare RL using the same electrophysiological components

as used here (i.e., FMT and frontal alpha asymmetry) before
and after treatment or psychotherapy.

Last, at the methodological level, our study also adds to the
existing EEG literature on RL by showing the added value of a
careful exploration and modelling of FMT power changes
across successive trials. Clear and compelling group differ-
ences emerged in the random condition when we examined
the evolution of FMT power across time, unlike standard av-
erages where they were less visible. These differences sug-
gested indirectly that MDD patients failed to maintain a high
level of cognitive control throughout the experiment when RL
was challenging, which is consistent with a motivational im-
pairment in these patients.We believe that this methodological
approach is valuable, because a careful analysis of the evolu-
tion of FMT power changes across successive trials can reveal
the temporal dynamic of RL and its modulation by MDD.
Moreover, the use of a Bayesian multilevel modelling allows
to deal with these (noisy) single-trial data, as well as to quan-
tify the evidence for a given hypothesis in terms of probability.

Conclusions

The results of this study suggest that RL can be globally
spared in MDD at the behavioral level. At the electrophysio-
logical level, we found that FMT power substantially changed
as a function of reward probability (thereby paralleling the
behavioral results) and in accordance with the evidence avail-
able: while it augmented with increasing reward probability at
the response level (internal monitoring), the reverse effect was
found at the feedback level (exploration), suggesting a flexible
engagement of this neurophysiological signal to optimize
learning. These neurophysiological effects were similar for
MDD patients and HCs in our study. However, when we ex-
amined FMT power changes at the single trial level when RL
was challenging (i.e., reward probability was at chance level),
MDD patients showed a steeper decrease across time than
HCs, suggesting indirectly a drop in the ability to maintain a
high level of cognitive control throughout the experiment in
this condition, and hence the presence of a specific motiva-
tional deficit in these patients. Moreover, when focusing on
frontal Alpha power, computed as a global state measure, or
response capability throughout the experimental session, clear
group differences emerged as well. More specifically, MDD
was associated with a larger inhibition of the left prefrontal
cortex that yielded a pronounced frontal Alpha asymmetry
compared with HCs, confirming a general deficit in approach
motivation in these patients (Coan & Allen, 2004; Davidson,
1998b). The present study helps to clarify the neurophysio-
logical mechanisms of RL and approach motivation and sug-
gests that MDD can alter the latter while leaving the former
globally spared.
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