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1  |   INTRODUCTION

Performance monitoring (PM) is a very important men-
tal ability, which is essential to foster goal‐adaptive behav-
ior and self‐regulation (Botvinick & Braver, 2015; Inzlicht, 
Schmeichel, & Macrae, 2014). PM is fairly complex and 
likely involves different computations, performed at differ-
ent levels within a hierarchical system implemented in the 

prefrontal cortex and interconnected dopaminergic regions 
located deeper in the brain, including the basal ganglia and 
the striatum (Ullsperger, Fischer, Nigbur, & Endrass, 2014). 
Although this process is rather sophisticated, it is also flex-
ible and dynamic, using either internal/motor‐related cues 
or external/feedback information depending on the evidence 
available, with the aim to extract the current action value and 
update it in case outcome and expectation mismatched with 
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Abstract
Converging evidence in human electrophysiology suggests that evaluative feedback 
provided during performance monitoring (PM) elicits two distinctive and successive 
ERP components: the feedback‐related negativity (FRN) and the P3b. Whereas the 
FRN has previously been linked to reward prediction error (RPE), the P3b has been 
conceived as reflecting motivational or attentional processes following the early pro-
cessing of the RPE, including action value updating. However, it remains unclear 
whether these two consecutive neurophysiological effects depend on the direction 
of the unexpectedness (better‐ or worse‐than‐expected outcomes; signed RPE) or 
instead only on the degree of unexpectedness irrespective of direction (i.e., unsigned 
RPE). To address this question, we devised an experiment in which we manipulated 
the objective reward probability and the subjective reward expectancy (via instruc-
tions) in a factorial within‐subject design and explored amplitude changes of the 
FRN and the P3b. A 64‐channel EEG was recorded while 32 participants performed 
a speeded go/no‐go task in which evaluative feedback based on the reward prob-
ability either violated expectancy (thereby creating a RPE) or did not. This violation 
corresponded either to better‐ or worse‐than‐expected events. Results showed that 
the FRN was larger when RPE occurred than when it did not, but irrespective of the 
direction of this violation. Interestingly, in these two conditions, action value was 
updated for the positive feedback selectively, as shown by the P3b amplitude. These 
results obey a two‐stage model of PM assuming that unsigned RPE is first rapidly 
detected (FRN level) before the positive feedback’s value is updated selectively (P3b 
effect).
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each other. Feedback processing guiding PM is clearly visible 
when these internal cues are lacking or when processing of 
these cues is incomplete. For example, if uncertainty about 
an action’s value is high at the time of response onset, then 
evaluative feedback provided after the response helps to re-
duce it and is preferentially processed. The electrophysiolog-
ical correlates of these dynamic PM effects have been studied 
extensively in the past, and well‐defined ERP components 
have been identified. At the response level, the error‐related 
negativity (ERN; see Falkenstein, Hohnsbein, Hoormann, &  
Blanke, 1991; Gehring, Goss, Coles, Meyer, & Donchin, 
1993) has been put forward as the first stage following action 
execution that allows a person to detect mismatches between 
action and goal or prediction. At the feedback level, when 
external‐based PM operates, the feedback‐related negativity 
(FRN) is usually considered as the counterpart of the ERN, 
sharing many similarities with it. The FRN is a phasic, nega-
tive‐going wave, peaking around 250–300 ms after feedback 
onset over frontocentral locations along the midline. Its am-
plitude is larger for negative relative to positive performance 
feedback (Miltner, Braun, & Coles, 1997; Nieuwenhuis, 
Holroyd, Mol, & Coles, 2004; von Borries, Verkes, Bulten, 
Cools, & de Bruijn, 2013) and for unexpected compared to 
expected events (Hajcak, Moser, Holroyd, & Simons, 2007; 
Pfabigan, Alexopoulos, Bauer, Lamm, & Sailer, 2011). 
Hence, valence (Hajcak, Moser, Holroyd, & Simons, 2006) 
and expectedness (Ferdinand, Mecklinger, Kray, & Gehring, 
2012) are two main ingredients that account for the gener-
ation of the FRN during PM (see also San Martin, 2012). 
Expectedness is related to expectancy or the degree to which 
a person expects to receive a certain feedback following the 
action: If expectancy to receive a positive feedback is high/
low, the occurrence of a negative feedback or the absence of 
a reward will be unexpected/expected.

However, the functional meaning or specific contribu-
tion of the FRN to PM remains debated in the literature 
(Hajihosseini & Holroyd, 2013; Proudfit, 2015; Ullsperger, 
2017; Ullsperger et al., 2014). Notably, the type of unex-
pectedness driving the FRN amplitude modulations remains 
unclear. According to the dominant reinforcement learning 
framework (Holroyd & Coles, 2002), the FRN is primarily 
generated when the outcome is worse than expected, which 
means that a “signed” or directional reward prediction error 
(RPE) occurs. A clear FRN is usually observed when the 
outcome is worse than expected (negative RPE): Participants 
expect the outcome to be rewarding (e.g., monetary gain), 
but it unexpectedly turns out to be nonrewarding. A smaller 
and weaker FRN is observed when the outcome is better than  
expected (positive RPE): Participants expect the outcome to 
be nonrewarding but it unexpectedly turns out to be reward-
ing. In the former situation, it is postulated that the outcome 
(i.e., feedback) is especially informative for the participants 
because it allows them to improve learning and adapt behavior 

accordingly, while this is less the case in the latter situation 
(Frank, Seeberger, & O'Reilly, 2004; Sambrook & Goslin, 
2015; Walsh & Anderson, 2012). At slight variance with this 
theory, the salience prediction error account (Alexander & 
Brown, 2011; Oliveira, McDonald, & Goodman, 2007) sug-
gests that the medial prefrontal cortex and, more specifically, 
the dorsal anterior cingulate cortex (ACC), which is thought 
to be the main intracranial generator of the FRN (Gehring & 
Willoughby, 2002; Miltner et al., 1997; Yeung, Holroyd, & 
Cohen, 2004), is sensitive to mismatches regardless of their 
sign, thereby responding equally strongly to better‐than‐ 
expected or worse‐than‐expected outcomes since they are 
both salient (Hauser et al., 2014; Soder & Potts, 2018; 
Talmi, Atkinson, & El‐Deredy, 2013; van der Veen, van der 
Molen, van der Molen, & Franken, 2016). The question thus 
remains unsolved whether the FRN codes for a signed or an 
unsigned RPE.

In the current study, we sought to address this question. 
To this end, we devised a within‐subject experiment in which 
four main experimental conditions were created by crossing 
reward probability (low or high across different blocks), and 
expectancy based on specific instructions (low or high across 
different blocks as well). These two main factors were embed-
ded in a factorial design. As a result, participants performed 
the exact same simple decision‐making task in four differ-
ent contexts that differed regarding reward probability and  
expectancy. More specifically, participants performed this 
task and expected it to be relatively easy (i.e., yielding many 
positive feedbacks) or more difficult instead (i.e., resulting 
in a lower number of positive feedbacks received). Crucially, 
unknown to them, this prior expectation was either confirmed 
or violated by adjusting reward probability in a blockwise 
fashion, leading eventually to better‐ or worse‐than‐expected 
outcomes. According to the reinforcement learning account 
(Holroyd & Coles, 2002), the FRN, defined as the difference 
wave between negative and positive feedback, should be the 
largest in the condition where the positive feedback is ex-
pected but the outcome eventually violates this expectation 
and a negative feedback is provided instead (i.e., worse‐than‐
expected event). Alternatively, if salience is the key feature 
underlying the generation of prediction errors at the FRN 
level (Hauser et al., 2014; Oliveira et al., 2007; Soder & Potts, 
2018; Talmi et al., 2013), then this ERP component should 
be equally large for better‐than‐expected and worse‐than‐ 
expected outcomes. Translated to a statistical analysis applied 
to this factorial design, both frameworks predict a significant 
interaction effect between reward probability and expectancy, 
but the interactions take different shapes in each framework. 
In the reinforcement learning account, the interaction reflects 
the modulation (increase) of the FRN amplitude for a specific 
or unique combination of probability (low) and expectancy 
(high) for negative feedback. In the salience account, two 
combinations of probability and expectancy (i.e., when they 
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mismatch with each other but irrespective of the direction of 
this deviation) both lead to an equally large (and statistically 
undistinguishable) FRN component.

Noteworthy, when PM is based on the processing of  
external evaluative feedback, it does not terminate at the 
offset of the FRN. Following the FRN, evaluative feedback 
usually elicits a clear P3b at posterior parietal leads along 
the midline (Ullsperger et al., 2014). Whereas the FRN is 
thought to reflect an early evaluation process during which 
the correspondence between action and goal is processed, the 
subsequent P3b translates this information into specific at-
tentional, motivational, or perhaps working memory (WM) 
processes (Donchin & Coles, 1998; Polich, 2007; Verleger, 
1997; Verleger, Jaskowski, & Wauschkuhn, 1994). A promi-
nent proposal is that the P3b component reflects action value 
updating during PM after detection of a mismatch between 
action and goal (Ullsperger, 2017; Ullsperger et al., 2014). 
Many previous ERP studies on PM have focused primarily on 
the FRN (see Sambrook & Goslin, 2015; San Martin, 2012), 
but only a few of them have also explored this subsequent 
action value updating process at the P3b level. Usually, a 
larger P3b is observed for unexpected than expected action 
outcomes (von Borries et al., 2013). In addition to unexpect-
edness, it is typically found that negative feedback gives rise 
to a larger P3b than positive feedback (de Bruijn, Mars, & 
Hulstijn, 2004; Fischer & Ullsperger, 2013; Walentowska, 
Moors, Paul, & Pourtois, 2016; but see Hajcak et al., 2007; 
Severo, Walentowska, Moors, & Pourtois, 2017, 2018, for a 
reversed pattern, as well as Yeung & Sanfey, 2004, for the 
lack of a valence effect), suggesting that action value updat-
ing likely depends on both expectedness and valence as well 
as on the context within which this updating takes place. The 
second goal of our study was to assess action value updating 
at the P3b level when different combinations of reward prob-
ability and expectancy were created and compared. Based on 
earlier studies, we hypothesized a larger P3b for unexpected 
feedback, especially if it was negative. Hence, we surmised a 
stronger updating of the action value for worse‐ compared to 
better‐than‐expected outcomes.

In the current study, participants performed a speeded go/
no‐go task that was previously used and validated extensively 
in different EEG studies in the past (e.g., Aarts & Pourtois, 
2012; Koban, Pourtois, Bediou, & Vuilleumier, 2012; 
Severo et al., 2017, 2018; Vocat, Pourtois, & Vuilleumier, 
2008; Walentowska et al., 2016; Walentowska, Paul, Severo, 
Moors, & Pourtois, 2018). We chose this specific task setting 
as it allowed us to introduce subtle variations in reward prob-
ability across different blocks without changing the stimuli or 
task demands between them. Using this procedure, we could 
create two experimental conditions where reward probability 
was either low (conservative cutoff, resulting in about 30%) 
or higher (lenient cutoff, reaching about 50%). In addition 
to reward probability, we tweaked expectancy in one or the 

opposite direction. More specifically, we instructed partici-
pants before each block about its putative reward probabil-
ity level and created thereby clear expectations about the  
encounter of positive feedback. Participants were told that 
positive feedback was either hard or easy to get, leading 
in turn to a low or high reward expectancy, respectively. 
Crucially, we then created four different conditions by 
crossing these two independent variables (probability and  
expectancy) and alternated block order across participants 
to control for unwanted fatigue or habituation effects. As a 
result of this factorial design, participants eventually encoun-
tered in some blocks low reward probability with this go/no‐
go task when reward was either expected or unexpected and, 
likewise, a higher reward probability with the same task in 
different blocks when reward was either expected or unex-
pected. Participants' subjective ratings about the positive and 
negative feedback after each block were used as the main ma-
nipulation check of reward expectancy. As mentioned earlier, 
we pitted two sets of predictions against each other to assess 
whether the FRN (and P3b) captured either a signed RPE or 
instead an unsigned RPE during PM in this task. For each 
of these two components separately, we also estimated the 
underlying intracranial generators using a standard source lo-
calization algorithm to confirm that nonoverlapping cortical 
regions gave rise to them.

2  |   METHOD

2.1  |  Participants
To estimate the sample size, we used G*Power 3.1.9.2 soft-
ware (Faul, Erdfelder, Lang, & Buchner, 2007) and referred 
to the observed effect size of the interaction effect in the time 
window of the FRN component in our previous study as prior 
(Walentowska et al., 2016). A sample of 33 participants was 
estimated to achieve a power of .95, with the significance 
level set at p =  .05.1 Thirty‐three healthy adult subjects were 
therefore recruited and participated in exchange for 30 Euro 
as compensation. One participant was removed from further 
analyses due to noncompliance with the task instructions and 
excessive movements throughout the whole task. The final 
sample consisted of 32 participants (10 men; mean age: 
20.96; SD = 2.69).2 All were right‐handed (assessed using 
self‐reports) and had normal or corrected‐to‐normal vision. 
They were free of neurological or psychiatric history and of 

1 The specific parameters chosen to run the power analysis are available in 
online supporting information.
2 In two participants, EEG data from one condition (out of four) were not 
recorded properly due to excessive movements and artifacts. Instead of 
simply removing the whole data sets of these two participants, we replaced 
the missing values with the condition‐specific mean amplitude computed 
for the group of participants.
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psychoactive medication use. They all gave written informed 
consent prior to the beginning of the experiment. The study 
was approved by the local ethics committee (Faculty of 
Psychology and Educational Sciences of Ghent University).

2.2  |  Experimental paradigm and procedure
A speeded go/no‐go task, which was previously validated 
in different EEG studies (Aarts & Pourtois, 2012; Koban 
et al., 2012; Severo et al., 2017, 2018; Vocat et al., 2008; 
Walentowska et al., 2016, 2018), was used in the current 
study. Cues, targets, and nontargets consisted of an arrow 
presented in the center of the screen against a white back-
ground. Each trial started with a fixation cross (1,000 ms). 
Then, a black arrow (cue), oriented up or down, was pre-
sented. After a variable interval (1,000  −  2,000  ms), this 
black arrow changed color and turned into either green or 
turquoise, while its orientation could remain either identi-
cal or switch. When the black arrow turned green and the 
orientation remained unchanged (target), participants were 
instructed to press a predefined key on the response box as 
fast as possible with the index finger of their right hand (go 
trials). However, participants had to withhold responding 
when either the arrow became green but flipped orienta-
tion or when it became turquoise and kept its initial orien-
tation (nontargets in no‐go trials). In the absence of motor 
responses, targets and nontargets remained on the screen for 
1,000 ms. At the onset of the motor response (correct: hits; 
incorrect: false alarms), a colored frame (blue or magenta) 
appeared around the target stimulus and was presented for 
1,000  ms to indicate to participants the registration of a 
motor response and the imminent presentation of the evalu-
ative feedback. Following that, an evaluative feedback was 
presented. It consisted of a colorful dot that was either green 
(for positive feedback) or red (for negative feedback) that 
was displayed in the center of the screen for 1,000 ms (see 
Figure 1 for the trial structure).

Participants were given positive feedback (green dot) when 
they responded both correctly and fast to go trials (fast hit) or 
when they correctly withheld responding to no‐go trials (cor-
rect inhibition). They were given negative feedback (red dot) 
when the response to go trials was correct but too slow (slow 
hit), when they gave a response to no‐go trials (false alarm), or 
when there was no response to go trials (omission). We used an 
online adaptive algorithm to set up a limit for correct and fast 
reaction times (RTs; i.e., response deadline procedure) in go 
trials. At the beginning of the experiment, the RT limit was set 
to 300 ms (based on previous pilot testing; Vocat et al., 2008). 
This limit was adjusted online (i.e., after each trial) as a func-
tion of the immediately preceding trial history, more specifi-
cally, as the mean of the current and previous RTs. Responses 
that were slower than this limit were classified online as slow 
hits (and followed by negative feedback), while responses that 

were faster than the limit were coded online as fast hits (and 
followed by positive feedback). The advantage of this algo-
rithm is that uncertainty about current RTs is high through-
out the task (given the fluctuations of RTs), which motivates 
participants to actively attend to the evaluative feedback pre-
sented after each response (on the go/target stimulus) to infer 
whether their actions were timely (fast hits) or not (slow hits). 
Moreover, the response deadline was updated throughout the 
experiment in order to avoid habituation or fatigue, and it was 
set up in such a way that correct and fast responding to go 
trials was fairly difficult to achieve (Aarts & Pourtois, 2012; 
Dhar & Pourtois, 2011; Dhar, Wiersema, & Pourtois, 2011; 
Koban, Pourtois, Vocat, & Vuilleumier, 2010; Koban et al., 
2012; Vocat et al., 2008). When correct inhibitions, omis-
sions, or false alarms occurred, participants could use internal 
PM to extract the value of their actions, with effects visible at 
the ERN or correct‐ related negativity (CRN) level mainly but 
not at the FRN/P3 level since the evaluative feedback becomes 
uninformative and highly redundant in these situations (see 
Koban et al., 2012, for a clear demonstration). Therefore, in 

F I G U R E  1   Trial structure. At response onset (speeded go/
no‐go task), a colored frame (blue or magenta) appeared around the 
target and stayed on screen until feedback offset, signaling either low 
or high reward expectancy. Irrespective of reward expectancy, reward 
probability was also either low or high, resulting in four conditions in 
our study when crossing these two factors. In two conditions, reward 
expectancy was violated with action outcomes, while in the other 
two—action outcomes matched reward expectancy. The current trial 
illustrates a correct and fast response to a go stimulus (i.e., below the 
arbitrary response deadline), followed by a positive feedback (green 
dot). If the response was correct but too slow (i.e., above the arbitrary 
response deadline), then a negative feedback (red dot) was shown 
instead
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this study, we selectively focused on the FRN and P3 com-
ponents in response to evaluative feedback following fast and 
slow hits (go trials).

Similarly to our previous study (Walentowska et al., 2016), 
we adapted the online algorithm to determine the response cut-
off in order to create two versions of the task that differed in 
terms of reward probability. In some blocks, a strict response 
cutoff was used whereby reward (i.e., fast hits) had a low prob-
ability (about 30%). In other blocks, a more lenient cutoff was 
used with a reward probability that increased up to 50% (see 
Walentowska et al., 2016, for details). Thus, the low and high 
reward probability conditions corresponded to 30% and 50% 
positive feedback, respectively. Orthogonally to the manipula-
tion of reward probability, we manipulated reward expectancy 
at the start of each block. We created specific expectations 
about the upcoming blockwise reward probability using writ-
ten instructions presented at the beginning of each block as 
well as a visual cueing technique. After a training session that 
gave the participants a general overview of the speeded go/
no‐go task, they were instructed that the experiment would be 
divided into two consecutive parts that differed with regard 
to the probability of receiving positive feedback. More spe-
cifically, they were told that they could expect positive feed-
back to be delivered with either low or higher probability, thus 
creating low and high reward expectancy for these two parts, 
respectively. Participants were therefore not confronted with 
the actual number for the reward probability that was expected 
in the following part but only with a rough estimate of it. In 
addition, participants were told that the color of the frame ap-
pearing around the target stimulus upon motor response (blue 
or magenta, depending on the condition) would signal which 
reward probability would apply. A blue frame signaled a low 
reward probability whereas a magenta frame signaled a high 
reward probability. This mapping between color frame and  
expectancy was counterbalanced across participants.

The experiment consisted of a training session with 32 
trials, followed by 12 experimental blocks, each including 
56 trials (40 go and 16 no‐go trials). Go and no‐go trials 
were presented in a random order within each block. These 
12 blocks were divided into two parts according to reward  
expectancy (low or high). Unbeknownst to the participants, 
the six blocks composing one part were further divided into 
two subparts (with three consecutive blocks for each of them), 
depending on reward probability. In this way, a factorial  
design was devised where effects of expectancy and reward 
probability (as well as their possible interactions) on the FRN 
and the P3b could be explored systematically. The order of 
the two main parts was counterbalanced across participants. 
Further, in each part, the two reward probabilities were also 
alternated across participants. Hence, 16 different versions 
of the experimental procedure were created, and participants 
were randomly assigned to one of them at the beginning of the 
experiment, so that each version of the procedure was used 

twice (given that we had 32 participants). Stimulus presen-
tation and response recording were controlled using E‐prime 
software (V2.0., http://www.pstnet.com/produ​cts/e-prime/​).

Participants completed subjective ratings after each trip-
let of blocks, hence, in between each of the four conditions. 
Participants were asked to evaluate the expectancy of positive 
and negative feedback in the preceding blocks as well as how 
informative this feedback was by means of specific visual ana-
log scales (VASs). More specifically, they were asked to rate (a) 
how expected was the positive feedback, (b) how expected was 
the negative feedback, and (c) how informative was the feed-
back on average in the last three blocks. Each scale ranged from 
0 (not expected/informative at all) to 100 (expected/informative 
a lot). These subjective ratings served as indirect manipulation 
checks of reward expectancy.

2.3  |  EEG acquisition and ERP analyses
Participants were seated in a dimly lit, sound‐attenuated, and 
electrically shielded cabin. Continuous EEG was acquired at 
512 Hz using a 64‐channel (pin‐type) BioSemi ActiveTwo sys-
tem (http://www.biose​mi.com), referenced online to the com-
mon mode sense (CMS)–driven right leg (DRL) ground. All 
electrodes were placed according to the extended International 
10‐20 EEG system using an elastic head cap. The vertical and 
horizontal electro‐oculograms (EOGs) were monitored by 
means of four electrodes, placed above and below the right 
eye and on the outer canthi of both eyes, respectively.

ERPs of interest (FRN and P3b) were computed offline 
following a standard sequence of data transformation (Keil et 
al., 2014) using BrainVision Analyzer 2.0 software: (a) 50 Hz 
notch filter; (b) rereferencing of the EEG signal using a com-
mon average reference; (c) −500/+1,000  ms segmentation 
around the onset of the feedback stimulus; (d) prestimulus 
interval baseline correction (from  −  500  ms to feedback 
onset); (e) vertical ocular correction for blinks (Gratton, 
Coles, & Donchin, 1983); (f) semiautomatic artifact rejection 
(trials with motor artifacts were rejected, with a fixed crite-
rion of ± 80 μV)3; (g) averaging of the feedback‐locked ERPs 

3 After artifact rejection, the following number of trials were retained for 
averaging per condition: low reward probability‒low reward expectancy 
(M = 30.23, SD = 2.52 for positive and M = 61.11, SD = 2.44 for negative 
feedbacks), low reward probability‒high reward expectancy (M = 29.51, 
SD = 1.52 for positive and M = 59.89, SD = 2.13 for negative feedbacks), 
high reward probability‒high reward expectancy (M = 50.32, SD = 1.92 
for positive and M = 48.12, SD = 2.12 for negative feedbacks), and high 
reward probability‒low reward expectancy (M = 47.97, SD = 1.72 for 
positive, and M = 50.03, SD = 2.11 for negative feedbacks) condition. Both 
low reward probability conditions were matched for the number of positive, 
t(31) = −1.18, p = .211, and negative, t(31) = −0.38, p = .631, feedback 
trials retained for averaging. Comparably, in both high reward probability 
conditions, a similar number of trials was used after artifact rejection for 
positive, t(31) = −1.57, p = .317, and negative feedback, t(31) = 0.59, p = 
.616.

http://www.pstnet.com/products/e-prime/
http://www.biosemi.com
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for each type of feedback separately; and (h) low‐pass digital 
filtering of the individual average data (30 Hz).4

In accordance with previous ERP studies focused on 
feedback‐based PM (Aarts & Pourtois, 2012; Bismark, 
Hajcak, Whitworth, & Allen, 2013; Ferdinand et al., 2012; 
Fischer & Ullsperger, 2013; Pfabigan et al., 2011; Severo  
et al., 2017, 2018; von Borries et al., 2013; Walentowska  
et al., 2016; Walsh & Anderson, 2012) as well as the electro-
physiological properties of the current data set (see Figure 3),  
the FRN was defined as the mean voltage within 250–
300 ms after feedback onset over frontal and frontocentral 
electrodes along the midline (Fz and FCz pooled together). 
The P3b amplitude was measured as a mean voltage between 
350 and 600 ms after feedback onset at centroparietal and 
parietal electrodes (CPz and Pz pooled together). Moreover, 
feedback‐locked ERP waveforms revealed the existence of 
another positive component occurring prior to the P3b but 
immediately after the FRN, with a frontocentral scalp distri-
bution, hence sharing many similarities with a P3a compo-
nent (see Figure 4 and Results). This frontocentral positivity 
peaking around 400 ms (P3a) was scored and defined as the 
mean voltage appearing 350–470 ms after feedback onset at 
the same locations as used for the FRN (Fz and FCz pooled 
together).

2.4  |  Source localization
In order to estimate the neural generators underlying previ-
ously identified ERP components, a distributed linear inverse 
solution was used, the standardized low‐resolution brain 
electromagnetic tomography (sLORETA; Pascual‐Marqui, 
2002). sLORETA solutions are computed within a three‐
shell spherical head model that is coregistered to the MNI152 
template (Mazziotta et al., 2001). sLORETA estimates the 
3D intracerebral current density distribution within a 5‐mm 
resolution. The 3D solution space is restricted to the corti-
cal gray matter and hippocampus. The head model uses the 
electric potential field computed with a boundary element 
method applied to the MNI152 template (Fuchs, Kastner, 
Wagner, Hawes, & Ebersole, 2002), and the scalp electrode 
coordinates on the MNI (Montreal Neurological Institute) 
brain are derived from the International 5% system (Jurcak, 
Tsuzuki, & Dan, 2007). Separately for each ERP component, 
positive and negative feedback were compared during the 
exact same interval (with a mean activity) as used for the 
standard ERP data analysis (see above). We used paired sam-
ples t tests performed on the log‐transformed data, and, as in 

our previous studies, we set the level of significance for all 
source localization analyses at p <  .01 (see also Schettino, 
Loeys, Delplanque, & Pourtois, 2011; Schettino, Loeys, & 
Pourtois, 2013).

2.5  |  Statistical analyses
Behavioral and ERP data were submitted to separate re-
peated measures analyses of variance (ANOVAs) includ-
ing the within‐subject factors reward expectancy (low vs. 
high) and reward probability (low vs. high). For the ma-
nipulation checks, we also used feedback valence (positive 
vs. negative) as an additional factor, and for the behavioral 
data we used response (fast vs. slow hit) as an additional 
variable.

For the ERP data, we computed and used difference wave-
forms to reduce the number of factors eventually entered in 
the statistical analyses (see Luck & Gaspelin, 2017). For each 
subject and condition separately, the ERP activity for posi-
tive feedback was subtracted from that for negative feedback. 
The ERP components of interest (i.e., FRN, P3a, P3b) were 
measured on these difference waves (see also Figure 5). The 
resulting amplitude values were submitted to repeated mea-
sures ANOVAs including the within‐subject factors reward 
expectancy (low vs. high) and reward probability (low vs. 
high). In an auxiliary analysis, we also included valence as 
an additional factor to investigate whether positive or nega-
tive feedback underwent a systematic change depending on 
expectancy and probability. For this analysis, the ERP com-
ponents of interest (i.e., FRN, P3a, P3b) were scored and 
measured from the individual waveforms obtained for posi-
tive and negative feedback.

Significant (at p  <  .05; see Section 2.4) main or inter-
action effects are reported first, followed by post hoc paired 
t tests when applicable. Statistical analyses were run using 
SPSS 24 for Windows and JASP 0.7.5.6 (Love et al., 2015) 
software.

3  |   RESULTS

3.1  |  Manipulation checks
Manipulation checks confirmed that reward expectancy 
was effective and successful. The ANOVA revealed a 
significant main effect of expectancy, F(1, 31)  =  5.38, 
p =  .027, ηp

2 =  .148, as well as an Expectancy × Valence 
interaction, F(1, 31)  =  56.12, p  <  .001, ηp

2  =  .644. In 
the two low reward expectancy conditions, participants  
expected less positive than negative feedback, t(31) = −4.25, 
p < .001 (see Figure 2a). In comparison, in the two high re-
ward expectancy conditions, participants expected positive 
feedback more often than negative feedback, t(31)  =  5.57, 
p < .001. These two effects were not influenced by the actual 

4 Similarly to other studies conducted in the same laboratory (see 
Walentowska et al., 2016, 2018), we refrained from using a high‐pass filter 
or de‐trend function because the EEG data were recorded using active 
electrodes and in a booth that was shielded from external noise and 
electromagnetic interference, and the raw signals were eventually not 
distorted.
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reward probability encountered (neither the main effect of 
probability nor interaction effects with probability were sig-
nificant, all ps > .327).

With regard to informativeness, the ANOVA showed 
a significant main effect of probability, F(1, 31)  =  4.12, 
p = .049, ηp

2 = .134, as well as a significant interaction be-
tween expectancy and probability, F(1, 31) = 5.25, p = .031, 

ηp
2  =  .147. The main effect of expectancy was not signif-

icant (p  =  .145). Post hoc t tests showed that feedback’s 
informativeness increased when the outcome was worse 
than expected (M  =  67.51, SEM  =  2.63) compared to the 
corresponding high expectancy‒high probability condition 
(M = 53.13, SEM = 4.34), t(31) = 2.57, p = .011. The sym-
metrical effect was not found: Feedback’s informativeness 

F I G U R E  3   Feedback‐locked grand‐averaged ERP waveforms, recorded from frontocentral electrodes (Fz and FCz pooled together; left) 
for the FRN (250–300 ms) and P3a (350–470 ms), and centroparietal locations (CPz and Pz pooled together; right) for the P3b (350–600 ms 
postfeedback onset). (a) ERPs when low reward expectancy was violated (i.e., outcome was better than expected). (b) ERPs when high expectancy 
was violated (i.e., outcome was worse than expected). For both conditions, a large and similar FRN (being more negative for negative than positive 
feedback) and a large P3b (being more positive for positive than negative feedback) were recorded. F stands for feedback onset, significant effects 
are highlighted in gray, and negativity is plotted upward

F I G U R E  2   Behavioral results. (a) Manipulation checks of reward expectancy (based on VAS scales). After each condition, participants 
reported the proportion of positive versus negative feedback received during the last three blocks. Results showed that these estimations closely 
followed the instructions and, hence, reward expectancy but were not influenced by reward probability. (b) In comparison, when looking at the 
actual task data, results showed that the number of positive and negative feedbacks (following fast and slow hits, respectively) closely followed the 
specific reward probability (either low or high) used in each of the two conditions. Reward expectancy did not influence this outcome. Note that for 
(a) scores can vary from 0 (not expected at all) to 100 (expected a lot), and for (a) and (b) error bars represent SEM. The following rule was used in 
condition naming in (a) probability_EXPECTANCY, and in (b) PROBABILITY_expectancy
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did not increase when the outcome was better than expected 
(M  =  53.22, SEM  =  4.26) compared to the corresponding 
low expectancy‐low probability condition (M  =  54.78, 
SEM = 3.95), t(31) = −0.15, p = .713.

3.2  |  Behavioral results
Behavioral results confirmed that the speeded go/no‐go 
task yielded the expected proportion of fast relative to slow 
hits depending on the actual reward probability (i.e., strict-
ness of the response deadline) used (see Figure 2b). The 
ANOVA showed that the main effect of response was sig-
nificant, F(1, 31) = 11.41, p = .004, ηp

2 = .233, as well as 
the Response  ×  Probability interaction, F(1, 31)  =  72.61, 
p < .001, ηp

2 = .712. When reward probability was low, ir-
respective of expectancy, slow hits clearly outnumbered fast 
hits, and participants had approximately 33% of fast hits fol-
lowed by positive feedback and approximately 66% of slow 
hits followed by negative feedback, t(31) = −1.72, p = .017. 
In comparison, when reward probability was increased, fast 
and slow hits were balanced, amounting to about 50% each, 
irrespective of expectancy again, t(31) = 0.72, p = .477 (see 
Figure 2b).

3.3  |  ERP results

3.3.1  |  FRN
The ANOVA showed a significant Expectancy × Probability 
interaction, F(1, 31) = 9.07, p = .009, ηp

2 = .213. Neither 
the main effect of expectancy (p = .209) nor of probability 
(p = .794) was significant. To test our a priori hypothesis, 
we performed post hoc comparisons. They showed that the 
FRN (computed as a difference wave between positive and 
negative feedback; see Method) was larger when the expec-
tancy and outcome mismatched (M = −2.53 μV, SD = 1.52) 
compared to when they matched (M = −1.44 μV, SD = 1.71), 
t(31) = −3.32, p = .002. However, and critically, the RPE 
captured by the FRN amplitude did not differ between trials 
with a worse‐than‐expected outcome (M  =  −2.72  μV, 
SD = 2.31) and those with a better‐than‐expected outcome 
(M = −2.16 μV, SD = 2.09), t(31) = 0.66, p = .4795 (see 

5 To validate the lack of difference in FRN amplitudes between the two 
mismatching conditions (i.e., better‐ or worse‐than‐expected outcomes), we 
ran a complementing analysis by performing a Bayesian paired samples t 
test. The estimated BF10 was 0.221, suggesting weak support in favor of a 
statistical difference between them (Raftery, 1995).

F I G U R E  4   Feedback‐locked grand‐averaged ERP waveforms, recorded from frontocentral electrodes (Fz and FCz pooled together; left) 
for the FRN (250–300 ms) and P3a (350–470 ms), and centroparietal locations (CPz and Pz pooled together; right) for the P3b (350–600 ms 
postfeedback onset). (a) ERPs when low reward expectancy was aligned with low reward probability. (b) ERPs when high reward expectancy was 
matched with high reward probability. Only when both reward probability and reward expectancy were low, see (a), a distinctive P3a was elicited 
for negative compared to positive feedback. F stands for feedback onset, significant effects are highlighted in gray, and negativity is plotted upward
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Figures 3 and 5a,b). Moreover, control analyses (see online 
supporting information, Appendix S1) confirmed that these 
results could not be easily explained by an imbalance be-
tween conditions in the number of trials included in the av-
erages. When signal‐to‐noise ratios between conditions 
were matched by selecting a subset of the trials correspond-
ing to negative feedback, almost identical results were 
found.

When entering valence as an additional factor in the 
ANOVA, results showed a significant main effect of valence, 
F(1, 31) = 57.09, p < .001, ηp

2 = .648, as well as a signif-
icant Valence × Expectancy × Probability interaction, F(1, 
31) = 7.35, p =  .011, ηp

2 =  .192. To break down this sig-
nificant three‐way interaction, we ran two‐way ANOVAs, 
separately for each valence. For the positive feedback, the 
Expectancy  ×  Probability interaction was significant, F(1, 
31) = 7.01, p = .013, ηp

2 = .184. This interaction translated to a 
more positive FRN amplitude when outcome and expectancy 
mismatched with each other (M = 1.56 μV, SD = 2.22) com-
pared to when they were aligned (M = 0.89 μV, SD = 2.43), 
although this difference failed to reach significance, 
t(31) = 1.38, p = .175. In comparison, for negative feedback, 
the FRN amplitude was similar regardless of whether the out-
comes mismatched (M = −0.72 μV, SD = 2.11) or matched 
with expectancy (M  =  −0.55  μV, SD  =  3.29), as revealed 
by a nonsignificant Expectancy  ×  Probability interaction,  
F(1, 31) = 0.41, p = .529.

3.3.2  |  P3a
The ANOVA showed a significant Expectancy × Probability 
interaction, F(1, 31) = 8.78, p = .006, ηp

2 = .233. Main ef-
fects of probability (p = .061) and expectancy (p = .282) 
were nonsignificant. Post hoc t tests showed that the P3a 
(defined as the difference between positive and negative 
feedback; see Method) was larger when reward probabil-
ity was low and compatible with expectancy (M = 2.34 μV, 
SD  =  2.47) compared to a better‐than‐expected outcome 
(M = −0.32 μV, SD = 2.29), t(31) = 2.94, p = .006. More 
specifically, the P3a was larger for negative (M = 3.66 μV, 
SD = 3.07) compared to positive feedback (M = 1.32 μV, 
SD = 3.85), when reward probability was low and it was 
expected (see Figures 4a and 5c). By comparison, the am-
plitude of the P3a was negligible and did not differ between 
trials in which both reward probability and expectancy were 
high (M  =  0.72  μV, SD  =  2.99) and those with a worse‐
than‐expected outcome (M = −0.05 μV, SD = 3.32), t(31) 
= −1.32, p = .195.

When including valence as an additional factor, the 
ANOVA showed a significant Valence × Expectancy × Pro
bability interaction, F(1,31) = 5.44, p = .026, ηp

2  =  .149. 
However, none of the two separate two‐way ANOVAs 
showed a significant Expectancy  ×  Probability interaction 
(for positive feedback, F(1, 31) = 2.38, p = .136; for negative 
feedback, F(1, 31) = 2.53, p = .121).

F I G U R E  5   Horizontal topographical maps of the feedback‐locked ERP data, separately for each condition. Each map shows the ERP 
difference wave obtained after subtracting positive from negative feedback (see also blue line in Figures 3 and 4) during a 100‐ms time interval 
(mean activity) (a) when low reward expectancy was violated, (b) when high reward expectancy was violated, (c) when low reward expectancy 
was confirmed, and (d) when high reward expectancy was confirmed. Main ERP effects are marked with a frame. (e) Source‐localization results 
(computed using sLORETA) for the three main ERP components recorded in this study: FRN (upper), P3a (middle), and P3b (lower; see the text 
for details)
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3.3.3  |  P3b
The ANOVA showed that the Expectancy × Probability in-
teraction was significant, F(1, 31) = 8.43, p = .007, 
ηp

2 = .214. Main effects of expectancy (p = .257) and prob-
ability (p = .712) were not significant. In agreement with the 
hypothesis of action value updating following early error pre-
diction, the P3b (defined as the difference between positive 
and negative feedback; see Method) was larger when out-
come and expectancy mismatched (M = −1.18  μV, 
SD  =  2.51) than when they matched (M  =  0.21  μV, 
SD = 2.61), t(31) = −2.92, p = .006. Importantly, the P3b 
amplitude did not differ for trials with a worse‐than‐expected 
outcome (M = −1.06  μV, SD  =  2.58) and a better‐than‐ 
expected outcome (M = −1.31  μV, SD  =  2.77), t(31) = 
−0.63, p = .5986 (see Figures 3 and 5a,b). Irrespective of the 
direction of expectancy violation, P3b amplitudes were sys-
tematically larger for positive (M = 2.85 μV, SD = 3.25) than 
negative feedback (M = 1.67 μV, SD = 3.18), t(31) = 2.12,  
p = .007.

When including valence as an additional factor, the 
ANOVA showed a significant Valence × Expectancy × Pro
bability interaction, F(1, 31) = 10.79, p = .003, ηp

2 = .258. 
To break down this significant three‐way interaction, we 
ran two‐way ANOVAs, separately for each valence. For 
positive feedback, the Expectancy  ×  Probability interac-
tion was not significant, F(1, 31) = 1.39, p = .246. The P3b 
amplitude was similar irrespective of whether the outcome 
mismatched (M  =  2.22  μV, SD  =  3.31) or matched with 
expectancy (M = 2.03 μV, SD = 3.01). In comparison, the 
Expectancy  ×  Probability interaction was significant for 
negative feedback, F(1, 31) = 6.06, p = .021, ηp

2 =  .164. 
The P3b was reduced when the outcome and expectancy 
mismatched (M = 1.21 μV, SD = 2.14) compared to when 
they matched (M  =  2.71  μV, SD  =  3.62), t(31) = −2.43,  
p = .023.

3.4  |  Source localization results
For the FRN, the statistical comparison in the inverse‐solu-
tion space between positive and negative feedback (run for 
both conditions with violated expectancy) revealed a wide-
spread suprathreshold activation within the medial prefrontal 
cortex, which was stronger for negative than positive feed-
back. More specifically, a main cluster was located within 
the midcingulate/ACC, overlapping with Brodmann areas 
(BAs) 24, 32, 33 (see Figure 5e, upper panel). Its maximum 
was located at x = 5, y = 10, z = 35 in BA 24, t(31) = 6.81, 
p < .0001.

For the P3a, the comparison between positive and neg-
ative feedback (using the low reward probability condition 
when expectancy matched) showed a stronger activation for 
negative than positive feedback within the right superior 
frontal gyrus (BAs 8‒10). This activation was maximal at 
x = 25, y = 55, z = 30 in BA 10, t(31) = 3.36, p = .02 (see 
Figure 5e, middle panel).

For the P3b, this comparison (using both conditions with 
violated expectancy) revealed a stronger activation for nega-
tive than positive feedback in the superior frontal gyrus (BAs 
6, 8), and was maximal at x = −3, y = 30, z = 60 in BA 6, 
t(31) = 2.55, p = .007 (see Figure 5e, lower panel).

4  |   DISCUSSION

PM is instrumental in fostering goal‐adaptive behavior 
(Ullsperger et al., 2014). It entails the swift detection of mis-
matches between goal and action (at the FRN level) and, 
subsequently, the updating of the action value (P3b effect), 
which is necessary to avoid error commission in the future 
and to learn new contingencies in the environment and in 
this way to improve self‐regulation and control (Inzlicht  
et al., 2014). However, whether the FRN reflects a signed 
RPE (i.e., worse‐than‐expected event mostly) or an unsigned 
RPE (i.e, either worse‐ or better‐than‐expected events, irre-
spective of the direction) remains debated in the literature. 
Likewise, it is still somewhat unclear how action value is 
updated at the P3b level after a mismatch between goal and 
action is processed at the FRN level.

To address these two questions, we devised an experi-
ment in which worse‐than‐expected or better‐than‐expected 
outcomes were artificially created and compared to yoked 
conditions for which actual and expected outcome did not 
conflict with each other. The behavioral results showed that 
our manipulation of expectancy was successful: Participants’ 
reports of feedback expectancy after each condition closely 
followed the instructions provided to them prior to task exe-
cution. This expectancy either matched or mismatched with 
the actual feedback participants received in the go/no‐go 
task in different blocks and which was based on the objec-
tive reward probability (see Figure 2a,b). Moreover, partici-
pants reported worse‐than‐expected outcomes (i.e., negative 
feedback provided after action execution, although a positive 
feedback was expected for it) to be overall more informative 
than better‐than‐expected outcomes (i.e., positive feedback 
provided after action execution, whereas negative outcome 
was anticipated for it), suggesting an asymmetry in the 
strength of the mismatch detection between goal and action 
at the subjective level.

However, and importantly, the ERP results clearly showed 
that the FRN was larger when outcome and expectancy 
mismatched with each other compared to when they did 

6 A Bayesian paired samples t test revealed that the BF10 was 0.249, 
indicating weak support for a statistical difference between these two 
conditions.
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not, but the direction of this violation did not matter. This 
early feedback‐locked ERP activity was reliably larger for 
negative compared to positive feedback, and this was true  
regardless of whether the outcome was either worse or better 
than expected. This unsigned RPE captured by the FRN was 
followed by a differential action value updating at the P3b 
level, whereby positive feedback was associated with a larger  
activity than negative feedback, but, again, this effect oc-
curred irrespective of the direction of the violation between 
outcome and expectancy. Finally, we also found an unex-
pected P3a effect for one condition only: When reward prob-
ability was low and reward expectancy was aligned with it, 
negative feedback led to a larger P3a compared to positive 
feedback. Hereafter, we discuss the implications of our new 
findings for neurobiological models of PM in greater detail.

4.1  |  Unsigned RPE at the FRN level
An important contribution of the current study to the exist-
ing literature is the demonstration that the FRN component 
is involved in the rapid detection of mismatches between ex-
pectancy and outcome, but irrespective of their direction: If 
the outcome deviates from expectancy, then a large FRN is 
elicited (see Figures 3 and 5a,b). Previous EEG studies have 
already reported larger FRN for negative relative to positive 
performance feedback (Miltner et al., 1997; Nieuwenhuis  
et al., 2004; von Borries et al., 2013) and for unexpected com-
pared to expected events (Hajcak et al., 2007; Pfabigan et al., 
2011). Our new results confirm the roles of valence and ex-
pectedness but suggest that expectedness must be understood 
as unsigned expectedness in line with the salience processing 
account (Hauser et al., 2014; Soder & Potts, 2018; Talmi et 
al., 2013) and not as signed expectedness in line with the re-
inforcement learning framework (Holroyd & Coles, 2002).

This salience effect during PM is probably supported by 
dopaminergic activity that arises within the basal ganglia and 
the striatum (Schultz, 2016; Schultz, Dayan, & Montague, 
1997; Ullsperger et al., 2014) and spreads to the dACC where 
the FRN is eventually generated (Gehring & Willoughby, 
2002; Miltner et al., 1997). This, in turn, enables the rapid 
trial‐by‐trial detection of a potential mismatch between out-
come and expectancy. This detection is thus deemed low 
level and carries certain features of automaticity (Moors & 
De Houwer, 2006). The assumption that the FRN may re-
flect unsigned RPEs during PM, and is thereby mostly 
driven by salience or surprise, is not new but backed up by 
a series of neuroscientific studies (e.g., Alexander & Brown, 
2011; Oliveira et al., 2007), including in animals (Hayden, 
Heilbronner, Pearson, & Platt, 2011). For example, using a 
probabilistic learning task, Hauser et al. (2014) concluded 
that the FRN is associated with surprise signals and abso-
lute (and not signed) RPEs. Likewise, Soder and Potts (2018) 
and Talmi et al. (2013) both reported ERP results suggesting 

that the FRN reflects an unsigned RPE rather than a signed 
RPE and that it has similar spatiotemporal properties and is 
even functionally equivalent for both worse‐ and better‐than‐ 
expected outcomes. Recently, van der Veen and collabora-
tors (2016) showed that unexpected social judgments yielded 
larger FRNs when compared to correctly predicted ones. This 
result likewise suggests that the FRN is sensitive to salience 
rather than signed RPEs. In sum, our new ERP findings are 
compatible with this broad literature. However, they also add 
to it because the experimental design that we devised was 
able to manipulate the relevant factors in a clean and trans-
parent manner. Unlike these earlier ERP studies, we used a 
simple go/no‐go task in which reward probability and reward 
expectancy were manipulated using a stringent within‐sub-
ject design. As a result, the four main conditions had similar 
stimuli and task demands but nevertheless led to different 
behavioral performances and expectancies. Our design was 
also devoid of learning effects and specific incentives (such 
as monetary gain or loss). Thus, the systematic amplitude 
variations of the FRN (and P3b) captured across the four 
conditions in our design could not easily be explained by 
uncontrolled factors, such as motivation, learning, or task  
involvement, for instance.

However, a striking observation is that subjective ratings 
regarding feedback's informativeness did not align with these 
FRN results. As it turned out, participants judged unexpected 
negative feedback as the most informative, whereas feed-
back’s informativeness was lower and balanced for the other 
experimental conditions, including unexpected positive feed-
back. This dissociation is intriguing as it suggests indirectly 
that these ratings were likely based on different evaluation 
or monitoring processes compared to those involved in the 
FRN. On the other hand, this dissociation is perhaps not so 
surprising considering that this ERP component is thought to  
reflect a rather automatic evaluation of the feedback per-
formed by the dACC, right after its onset (Holroyd & Coles, 
2002), and, presumably, this effect may not be readily acces-
sible to introspection. Our supplementing source localization 
results also clearly corroborated the involvement of the dACC 
in the generation of the FRN recorded in our study but not 
in the generation of the P3a or P3b. The involvement of the 
dACC in the generation of the FRN, as observed here, accords 
well with previous EEG studies (Gehring & Willoughby, 
2002; Miltner et al., 1997; Yeung et al., 2004) as well as with 
studies using combined EEG‐fMRI techniques (Hauser et al., 
2014) or neuroimaging only (Oliveira et al., 2007).

Moreover, a set of auxiliary analyses showed that this 
modulation of the FRN with expectancy was mostly driven 
by the positive rather than the negative feedback. Because 
positive feedback and more specifically reward are associated 
with a distinctive ERP component, known as the reward pos-
itivity (Proudfit, 2015), our results suggest indirectly that this 
reward‐related activity could eventually be the one that was 
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influenced by expectancy in our study. However, additional 
studies are needed to assess whether it is reward expectancy 
or rather reward sensitivity that is altered when the outcome 
(i.e., positive feedback) and expectancy mismatch, especially 
if this outcome denotes either a better‐ or a worse‐than‐ 
expected event. In this context, ERP studies that seek to bet-
ter characterize the fine‐grained spatiotemporal dynamics 
of reward processing during feedback‐based PM could help 
disentangle effects of valence from expectancy (see Gheza, 
Paul, & Pourtois, 2018, for a recent attempt).

A valid objection could be that expectancy or probabil-
ity already shaped feedback processing before the onset of 
the FRN. To rule out this alternative account, we ran a set 
of auxiliary analyses during the prefeedback interval (see 
supporting information, Appendix S1) where we focused on 
the stimulus‐preceding negativity (SPN) component, which 
is sensitive to reward anticipation (Brunia, 1988; Brunia, 
Hackley, van Boxtel, Kotani, & Ohgami, 2011; Brunia & van 
Boxtel, 2001) and feedback informativeness (Walentowska 
et al., 2018). These supplementary results clearly showed 
that these FRN effects were not simply mirrored by earlier 
SPN effects occurring prior to feedback onset. In line with 
our previous study (Walentowska et al., 2018), we found that 
the SPN was larger (i.e., more negative) in anticipation of 
positive than negative feedback but exclusively when posi-
tive feedback had a high probability. These control analyses 
therefore support the interpretation that salience influenced 
feedback processing after its onset (at the FRN level) but not 
prior to it (at the SPN level).

4.2  |  Action value updating at the P3b level
Our new ERP results also inform about the subsequent 
updating process, following salience detection at the FRN 
level. A larger P3b for positive than negative feedback 
(following mismatches between outcome and expectancy) 
suggests that the former was better or more strongly pro-
cessed than the latter (see Figures 3 and 5a,b). Moreover, 
when entering valence as additional factor in the statisti-
cal model, we found that the P3b was selectively reduced 
for negative feedback when outcome and expectancy mis-
matched, suggesting impaired updating for this specific 
combination and outcome. In line with previous EEG stud-
ies that linked the P3b to closure, WM updating, or atten-
tion more generally (Donchin & Coles, 1998; Polich, 2007; 
Verleger, 1997; Verleger et al., 1994), we can conclude that 
positive feedback provided, in a context of violations be-
tween expectancy and outcomes received, eventually more 
weight or attention (e.g., facilitated closure and updating) 
than negative feedback. An important additional contribu-
tion of our study is to show that this gating effect at the 
P3b level happens to occur regardless of whether the posi-
tive feedback was a worse‐ or better‐than‐expected event. 

Hence, similar to the FRN, our results for the P3b suggest a 
decoupling between the specific information value carried 
by the evaluative feedback at the subjective level (being 
presumably larger for worse‐than‐expected compared to 
better‐than‐expected outcome; see Holroyd & Coles, 2002) 
and action value updating at the neural level. To be noted, 
the involvement of the P3b in this specific process during 
PM was already demonstrated in previous EEG studies that 
linked the amplitude of the P3b to information/value updat-
ing at the computational level (Fischer & Ullsperger, 2013; 
Ullsperger, 2017; Ullsperger et al., 2014; von Borries  
et al., 2013).

Alternatively, this enhanced P3b for positive compared to 
negative feedback in two contexts in which expectancy and 
outcome mismatched could reflect enhanced goal relevance 
processing of this specific feedback, especially if positive. 
More specifically, in a recent EEG study, we found that the 
P3b component was systematically larger for evaluative feed-
back deemed goal relevant for participants (Walentowska et 
al., 2016). Relevance was understood in this study as the de-
gree to which a stimulus was informative about the satisfac-
tion status of pursued goals (see also Moors, 2007). Moreover, 
in another recent EEG study, we found evidence that goal 
relevance understood as impact increased the P3b during 
PM (Severo et al., 2017, 2018). Impact corresponded to the 
amount of goal satisfaction that was signaled by the feedback 
stimulus. Hence, it is possible that the P3b was larger for pos-
itive feedback in these situations where violations occurred 
because it was more relevant for participants, in the sense 
of informing them swiftly about something important hap-
pening or perhaps having a greater impact for their goals. In 
this framework, action value updating and relevance process-
ing at the P3b level are not necessarily mutually exclusive. 
Presumably, action value updating could be facilitated by the 
enhanced relevance assigned to the positive feedback when 
it was delivered in a context where outcome and expectancy 
mismatched with each other.

Unexpectedly, apart from the P3b updating effect,  
another and earlier valence effect was observed after the FRN 
at the same frontocentral locations and thereby sharing many 
similarities with a P3a ERP component. Specifically, when 
reward probability was low and there was no mismatch be-
tween outcome and expectancy, negative feedback gave rise 
to a much larger P3a than positive feedback in this context. 
Obviously, this effect cannot translate to a simple oddball 
effect (Polich, 2007) given that negative feedback was not 
deviant in this condition, on the contrary. Unlike the FRN 
and P3b components, this P3a effect was not unsigned or 
explained by salience but actually found for a single com-
bination of probability and expectancy only, namely, when 
low reward probability and low reward expectancy converged 
(see Figures 4a and 5c). Some hints on the possible role of 
the P3a during PM were already provided by Ullsperger and 
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colleagues (2014), suggesting that the P3a could be associ-
ated with an attention orienting to potentially goal‐relevant 
stimuli, before its exact motivational meaning (i.e., whether 
the stimulus matches or mismatches with goals) is extracted 
later at the P3b level (see above). When estimating the intra-
cranial generators of this P3a effect, we found the superior 
frontal gyrus to be the main source—a result that is in line 
with older neurophysiological findings that have linked fron-
tal lobe activity to the P3 (Baudena, Halgren, Heit, & Clarke, 
1995; Halgren, Marinkovic, & Chauvel, 1998).

Presumably, negative feedback provided in a context where 
it dominated and was expected by the participants (with, as a 
result, a small FRN) unlocked additional attentional or moti-
vational processes that may explain this selective P3a effect. 
In this condition, participants’ self‐efficacy (Bandura, 1982, 
1993; Bandura & Cervone, 1983) was challenged extensively 
as they were expecting negative feedback after their go/no‐
go decisions, and the outcome confirmed this (i.e., low self‐ 
efficacy). This situation, although not associated with a vio-
lation between expectancy and outcome, was probably asso-
ciated with a high level of negative affect and/or frustration, 
facilitating in turn the processing of negative feedback at the 
P3a level in this condition. Although this assumption awaits 
validation at the empirical level, our new results for the P3a 
and P3b suggest that PM brain mechanisms are highly flexi-
ble, exploiting in a dynamic and context‐sensitive manner the 
evidence available after feedback onset to monitor and update 
action value. As our new results indirectly suggest, this pro-
cess could very well have occurred earlier in time for nega-
tive information when it met expectancy (at the P3a level), 
compared to the processing of positive information, which 
was globally enhanced at a later stage when expectancy was 
violated (P3b level).

4.3  |  Limitations
A few limitations warrant comment. First, we considered re-
ward probabilities of 33% as low and of 50% as high. It could 
be argued that these percentages reflect low or intermediate 
levels instead. Moreover, it could be objected that uncer-
tainty (which is larger for 50% than a 33% reward probabil-
ity), rather than reward probability (see Mushtaq, Bland, & 
Schaefer, 2011; Yu & Dayan, 2005), was the main difference 
between our conditions. However, a previous ERP study al-
ready reported that the FRN and P300 scaled up with unex-
pectedness rather than uncertainty (Kogler, Sailer, Derntl, & 
Pfabigan, 2017), suggesting that the former variable likely 
accounted for the systematic amplitude modulation of the 
FRN (and P3) seen in the current study. Moreover, we chose 
these specific reward probabilities (and specific task setting 
for the RT deadline) based on many previous EEG studies 
that already validated them using the same go/no‐go task (see 
Aarts & Pourtois, 2012; Koban et al., 2012; Severo et al., 

2017, 2018; Vocat et al., 2008; Walentowska et al., 2016) 
and reported clear‐cut FRN and P3b effects. In addition, the 
behavioral results and subjective ratings (see Figure 2) both 
confirmed that we created four different conditions that could 
indeed be discriminated from one another based on the match 
or mismatch between reward probability and reward expec-
tancy. Notwithstanding these elements, it appears important 
to explore in future studies the neural processing of matches 
versus mismatches between reward probability and expec-
tancy, with tasks yielding higher reward probabilities than in 
the present experiment if possible.

Second, in the current study, we did not include a baseline 
condition without instructions about the reward probabilities 
to be expected because we did not want to increase the al-
ready long duration of our experiment. However, in order to 
replicate and extend the amplitude change of the FRN (and 
P3b) with expectancy, it would be important in future ERP 
studies to add such a control condition. This would probably 
allow the researcher to more easily disentangle the contribu-
tion of subjective (i.e., expectancy) from objective (i.e., prob-
ability) effects on the FRN and P3b levels.

Third, our main manipulation check for reward expec-
tancy was probably not “pure” and was contaminated by 
social desirability or memory effects. It was important to 
confirm, via specific questions asked of the participants, 
that they actually followed the instructions given to them 
beforehand, and hence eventually “remembered” afterward 
the reward probability (either low or high) that was expected 
in a specific condition. However, this procedure may have 
hindered the possibility to find a significant effect of reward 
probability, besides expectancy, on these subjective ratings. 
To overcome this limitation, we suggest using different and 
more implicit manipulation checks in future studies if pos-
sible, which would probably allow the researcher to more 
objectively capture effects of both expectancy and reward 
probability during the monitoring of positive versus negative 
performance feedback.

4.4  |  Conclusion
The current study showed that, when a simple go/no‐go task 
was used, the FRN component, generated in the dACC, cap-
tured unsigned RPEs during PM and could be interpreted as 
driven by salience or surprise. Intriguingly, participants rated 
the worse‐than‐expected outcome as the most informative 
one, suggesting a dissociation between self‐report and ERP 
results. Moreover, the P3b component was larger for posi-
tive than negative feedback, if and only if mismatches be-
tween expectancy and outcome occurred, irrespective of their  
direction. These results suggest that action value updating 
at the P3b level was stronger for positive than negative out-
comes and probably generic. However, when negative feed-
back prevailed and this dominance was anticipated by the 
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participants, we found that it was processed more strongly 
than positive feedback at the P3a level, suggesting that nega-
tive information can guide action value updating or monitor-
ing at an earlier stage than positive information, for which a 
P3b effect was found. All in all, these new ERP results are 
not only compatible with current neurobiological models of 
PM (e.g., Ullsperger et al., 2014), but they can also serve to 
inform them about the specific combination of task‐specific 
(i.e., reward probability) and subject‐dependent (i.e., reward 
expectancy) factors that can influence the speed and effi-
ciency of PM.
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