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Abstract

■ The goal of temporal difference (TD) reinforcement learning
is to maximize outcomes and improve future decision-making.
It does so by utilizing a prediction error (PE), which quantifies
the difference between the expected and the obtained out-
come. In gambling tasks, however, decision-making cannot
be improved because of the lack of learnability. On the basis
of the idea that TD utilizes two independent bits of informa-
tion from the PE (valence and surprise), we asked which of
these aspects is affected when a task is not learnable. We con-
trasted behavioral data and ERPs in a learning variant and a
gambling variant of a simple two-armed bandit task, in which
outcome sequences were matched across tasks. Participants

were explicitly informed that feedback could be used to
improve performance in the learning task but not in the gam-
bling task, and we predicted a corresponding modulation of the
aspects of the PE. We used a model-based analysis of ERP data
to extract the neural footprints of the valence and surprise in-
formation in the two tasks. Our results revealed that task learn-
ability modulates reinforcement learning via the suppression of
surprise processing but leaves the processing of valence unaf-
fected. On the basis of our model and the data, we propose that
task learnability can selectively suppress TD learning as well as
alter behavioral adaptation based on a flexible cost–benefit
arbitration. ■

INTRODUCTION

How do agents optimally learn to select actions that lead to
the achievement of their long-term goals? Reinforcement
learning provides an elegant answer to this question by
offering a normative computational framework of decision-
making for goal-directed agents interacting with an un-
certain environment (Sutton & Barto, 2018). Although
reinforcement learning spans a very broad range of dif-
ferent algorithms, the most prominent candidate is tem-
poral difference (TD) learning, as it offers a simple yet
powerful formalization of trial-and-error learning. More
importantly, the existing evidence suggests distinct neural
footprints of TD in both animals and humans (Daw &
O’Doherty, 2013; Lee, Seo, & Jung, 2012; Botvinick, Niv,
& Barto, 2009; Niv, 2009; Holroyd & Coles, 2002). At its
core, TD learning revolves around the idea of a prediction
error (PE), which is calculated as the difference between
the expected and the actual outcome of an action or state
in the environment. This PE can then be used as an inter-
nal teaching signal as it carries two independent bits of in-
formation: (1) information about valence, which describes
if an outcome was better (+) or worse (−) than expected,

and (2) information about surprise, which quantifies how
far off the expectation was. For subsequent computations,
this information can be used to update expectations and
translate them into future behavior.
Although the idea of TD learning emerged as an impor-

tant principle for explaining human decision-making (Daw
& O’Doherty, 2013; Lee et al., 2012; Botvinick et al., 2009;
Niv, 2009; Holroyd & Coles, 2002), little is known on how
its application is influenced by explicit knowledge about
the environmental structure. Crucial but still open ques-
tions are whether TD learning can be suppressed if a task
is not learnable (i.e., outcome feedback is uninformative
for optimizing behavior) and, if so, for which bit of infor-
mation this suppression occurs. In this study, the effect of
learnability is investigated by contrasting brain activity in
a learning task and a gambling task. Considering electro-
physiological correlates of feedback processing in amodel-
based analysis, we asked which aspect of the PE is affected
by learnability—information about valence or information
about surprise.
The significance of TD learning for behavior is supported

by evidence coming from both animal and human
studies (Dayan & Niv, 2008; Balleine, 2005; Dickinson
& Balleine, 2002). Although early work showed that the
firing pattern of midbrain dopamine neurons in monkeys
closely resembles a PE as predicted by TD algorithms
(Schultz, Dayan, & Montague, 1997; Montague, Dayan,
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&Sejnowski, 1996), similar findings were also later observed
in humans (Schonberg et al., 2010; D’Ardenne, McClure,
Nystrom, & Cohen, 2008; Pessiglione, Seymour, Flandin,
Dolan, & Frith, 2006). Since then, correlates of the PE have
been replicated extensively in subpopulations of several
neural structures such as the striatum, the amygdala, and
multiple areas of the (pre)frontal cortex (Schultz, 2016).
In recent years, an increasing number of studies have

used ERPs to investigate the neural dynamics underlying
reinforcement learning. It has consistently been shown
that ERPs are sensitive to feedback valence already at
around 200 msec after feedback onset in a component
called the feedback-related negativity (FRN; Miltner,
Braun, & Coles, 1997). The FRN manifests as a negative
deflection at frontocentral electrodes about 200–350msec
after feedback onset. The FRN is typically larger for nega-
tive than positive feedback (for reviews, see San Martín,
2012; Walsh & Anderson, 2012), a phenomenon we refer
to as the ΔFRN.1 Crucially, numerous studies could show
that the ΔFRN scales with outcome magnitude and likeli-
hood, supporting theoretical assumptions that the FRN
amplitudes also reflect information about surprise as sug-
gested by the reinforcement learning theory (Holroyd &
Coles, 2002; for reviews, see Sambrook & Goslin, 2015;
San Martín, 2012; Walsh & Anderson, 2012). In addition
to the ΔFRN, feedback elicits a P3, which has been associ-
ated with a broad range of cognitive phenomena (for re-
views, see Polich, 2020; San Martín, 2012). Manifesting as
a parietal positivity around 300–600 msec after feedback
onset, this feedback-P3 has beenmainly reported to reflect
surprise (Kopp et al., 2016; Seer, Lange, Boos, Dengler, &
Kopp, 2016; Kolossa, Kopp, & Fingscheidt, 2015; Mars
et al., 2008) and learning (Nassar, Bruckner, & Frank,
2019; Jepma et al., 2016, 2018; Fischer & Ullsperger,
2013). Importantly, recent evidence suggests that the rela-
tionship between P3 and learning is strongly modulated by
the task context, thereby supposedly reflecting amediated
response to surprise (Nassar et al., 2019). Despite the ob-
vious link between the P3 and surprise, its role within a
reinforcement learning perspective of human decision-
making is still unclear.
Crucial yet unanswered questions are whether and

how top–down processes can modulate TD learning.
These questions have recently been addressed in studies
manipulating the goal relevance of feedback, that is, the
informativeness of feedback for optimizing behavior.
These studies revealed rather similar effects for the
ΔFRN and the P3. When participants were instructed on
the reliability of feedback in probabilistic learning (i.e.,
the probability that the same action will lead to the same
outcome on future trials), the ΔFRN as well as the P3 was
increased for reliable feedback as compared to unreliable
feedback (Di Gregorio, Ernst, & Steinhauser, 2019; Ernst
& Steinhauser, 2017, 2018; Schiffer, Siletti, Waszak, &
Yeung, 2017). The modulation of the ΔFRN could partially
be attributed to a top–down modulation because the
effect was observed even when the objective reliability

of feedback was held constant (Di Gregorio et al., 2019;
Schiffer et al., 2017). Similar results were obtained in a
speeded go/no-go task in which feedback could indicate
whether responses were correct and faster than an un-
known response time cutoff (Walentowska, Moors, Paul,
& Pourtois, 2016) and in a time estimation task (Severo,
Paul, Walentowska, Moors, & Pourtois, 2020). Again, the
ΔFRN and the P3 were larger when feedback provided valid
and relevant information for optimizing task performance.

The results described above could be taken as evidence
that all aspects of TD learning are suppressed when feed-
back is goal irrelevant. However, such a conclusion might
be premature for several reasons. First, as we have seen,
the two main ERP components of feedback processing
(ΔFRN and P3) cannot be unequivocally mapped onto
the aspects of the PE. Valence and surprise information
might contribute to both components, which raises the
possibility that only one of these processes caused the
ΔFRN and P3 results. A viable method to deal with this
problem is to use computational modeling to provide di-
rect estimates of the PE that can informmodel-based anal-
yses of the neural data (Mars, Shea, Kolling, & Rushworth,
2012; Gläscher & O’Doherty, 2010). Second, although the
abovementioned studies manipulated the information
content of feedback, behavioral adaptation could still
lead to performance improvements in all conditions, at
least in some of the studies (e.g., Di Gregorio et al.,
2019). A stronger manipulation would be to vary the
learnability of tasks, that is, to contrast a probabilistic
learning task with a mere gambling task. Whereas perfor-
mance can be improved by utilizing feedback in a learn-
ing task, gambling tasks do not allow for improving
performance at all. From a normative perspective, the
calculation of a PE has no utility in the latter condition.
Therefore, the comparison between learning and gam-
bling is a strong test for revealing top–down processes
in TD learning. First evidence for such a modulation
stems from a study in which the ΔFRN has been shown
to vary with PEs in a learning task but not in a gambling
task (Holroyd, Krigolson, Baker, Lee, & Gibson, 2009).

The aim of this study is to investigate how the calculation
of a PE is influenced by the learnability of the environment,
which was manipulated by varying the causal structure of a
task. On the basis of the idea that the PE carries informa-
tion about both valence and surprise of an outcome, we
asked which of these aspects is affected when participants
are confronted with a learnable task and a nonlearnable
task, respectively. In both tasks, we used a simple variant
of a two-armed bandit problem (Daw, O’Doherty, Dayan,
Seymour, & Dolan, 2006). Whereas participants could
adapt to the varying reward probabilities by utilizing feed-
back in the learning task, feedback was fully unrelated to
participants’ choice behavior in the gambling task. To pre-
vent the results from reflecting systematic differences in
the frequency and order of feedback, the two tasks were
matched with respect to feedback sequence (see Methods
for details). Crucially, we used a computational modeling

Wurm et al. 35

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/34/1/34/2007804/jocn_a_01777.pdf by G
hent U

niversity user on 07 April 2023



approach to separate the effects of learnability on the two
aspects of the PE. By modeling behavior in the two tasks
using multiple instantiations of the same computational
algorithm, we could robustly estimate PEs for each single
trial and use its constituent parts to predict neural data
in a linear model. On the basis of the idea that valence
information is strongly related to the FRN amplitudes
whereas surprise information is reflected by the P3 (Nassar
et al., 2019; Mars et al., 2008), we expected to find correlates
of valence at earlier frontocentral locations and correlates
of surprise at later posterior locations. Importantly, if TD
learning is influenced by learnability, we hypothesized to
find either a reduced ΔFRN or a reduced P3, or both, for
the gambling task relative to the learning task. Moreover,
any influence of task learnability on the calculation of PEs
should be reflected by a modulation of the strength by
which its constituent parts predict the respective neural
activity.

METHODS

Participants

Thirty participants (24 women) between 18 and 28 years
old (M = 21.9 years, SD = 2.6 years) with normal or
corrected-to-normal vision and free from neurological
and psychiatric history (based on self-reports) participated
in the study. Participants were recruited at Ghent
University. They received A20 for participation and a
performance-dependent bonus (M = A2.16, SD =
A1.14). All participants provided informed consent, and
the study was approved by the local ethics committee
(Faculty of Psychology and Educational Sciences of Ghent
University).

Stimuli

The experimental task was programmed and executed
using Presentation software (Neurobehavioral Systems).
The stimulus set consisted of 112 black-and-white drawings
obtained from the online database of the International

Picture Naming Project (Szekely et al., 2005). Pictures were
converted into 300 × 300 pixel images corresponding to a
visual angle of 6.4° in height and 6.4° in width at a viewing
distance of 80 cm. For each block, eight pictures were
randomly sampled from the stimulus array (without
replacement) and then further divided into four stimulus
pairs, which were shown to the left and right of a centrally
presented fixation cross at a distance of 0.7°. The left or right
position for each stimulus in a pair was randomly deter-
mined for each trial. The feedback stimuli were a white
diamond (win) and a white rock (loss) that were centrally
presented at a height of 2.8° and a width of 2.5°. All stimuli
were presented on a black background.

Task and Procedure

We employed two variants (learning task vs. gambling task)
of a simple two-armed bandit task in which participants
had to repeatedly choose between two actions correspond-
ing to the two stimuli in a stimulus pair (Figure 1A). Both
tasks differed regarding their objective learnability, that
is, the utility of feedback for improving performance.
For the learning task, the mapping between actions and
feedback was highly coherent, making behavioral adapta-
tion based on feedback relevant for optimizing outcome.
The two possible actions of each stimulus pair were asso-
ciated with reward probabilities p and (1 − p), and
p varied throughout a block according to a Gaussian ran-
dom walk with reflecting boundaries at 0 and 1 (e.g.,
Sambrook, Hardwick, Wills, & Goslin, 2018; Daw, 2011).
On each repetition of this stimulus pair, p was constantly
updated by adding a value drawn from a Gaussian distribu-
tion with M = 0 and SD = 0.1 (Figure 1B). If this update
led to values below 0 or above 1, p was set to 0 or 1, re-
spectively. For the gambling task, the mapping between
action and feedback was pseudorandom. More specifi-
cally, we used the same feedback sequence as in the
preceding learning-task block while presenting a ran-
domly shuffled stimulus pair sequence. Because of this
combination of a yoked feedback sequence and a

Figure 1. (A) Graphical
illustration of a trial. Participants
had to choose between two
stimuli. After an intermediate
presentation of a fixation cross,
feedback was shown followed
by another fixation cross. (B)
Example of a Gaussian random
walk. Over the course of a
block, reward probabilities
p associated with one of the
stimuli in a stimulus pair
gradually changed according to
a Gaussian random walk with
a mean of 0 and a standard
deviation of 0.10. The probability
of reward for the other stimulus
in the stimulus pair was 1 − p.
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randomized stimulus sequence, participants’ actions
could not influence subsequent feedback making behav-
ioral adaptation irrelevant for optimizing outcome.
The procedure of a trial was identical in the two differ-

ent task variants and is illustrated in Figure 1A. At the be-
ginning of each trial, a stimulus pair was presented for up
to 3500 msec. An action had to be made by pressing one
of two keys on an English standard keyboard (E with the
left index finger for choosing the left stimulus, I with the
right index finger for choosing the right stimulus). After
the keypress, the stimulus pair disappeared, and a fixation
cross was presented for a fixed time of 1000 msec.
Afterward, feedback was centrally presented for 1000 msec.
Diamonds indicated wins, whereas rocks indicated
losses. After the disappearance of the feedback stimulus,
a fixation cross displayed for 1000 msec marked the end
of the trial. If no action was carried out during presenta-
tion of the stimulus pair, the trial was aborted and counted
as a miss. The feedback stimulus for misses was a white
question mark. The participants were informed that
misses were associated with a loss of 5 cents, whereas
positive and negative feedback was associated with a
win/ loss of ±2 cents, respectively. Participants worked
through 10 blocks with 64 experimental trials each.
Learning and gambling tasks alternated across blocks,
and the task of the first block was counterbalanced across
participants. Before each block, participants were in-
formed about which task was used in the upcoming
block. In each block, four new stimulus pairs were intro-
duced. Blocks consisted of 16 subblocks in which all four
stimulus pairs were presented in random order. To avoid
unequal attention allocation to the feedback stimuli be-
tween tasks, we included 10 catch trials in each block,
which were randomly interspersed among the experi-
mental trials. Participants’ task in catch trials was to recall
the previously shown feedback. Participants were pre-
sented a prompt (“What feedback was shown last?”)
and indicated the feedback by pressing the E key in case
of a win, the I key in case of a loss, or the space key if they
did not remember (or if the last trial was a miss).
At the beginning of the experiment, participants re-

ceived written instructions on the task. The instructions
included information on decision-making and feedback
in the task in general, as well as the basic properties of
the learning task and the gambling task. For the learning
task, participants were instructed that they could learn
which action is most likely to be followed by a win.
Furthermore, they were informed about the implementa-
tion of the random walk and the resulting changes in re-
ward probabilities. For the gambling task, participants
were told that they are unable to learn which action is
most likely to be followed by reward. Afterward, they
worked through two short practice blocks, one from
each task, in which two stimulus pairs were presented
10 times. These blocks were then followed by two long
practice ones, again one from each task, in which four
stimulus pairs were presented 16 times. The order of

tasks in the practice blocks was the same as in the sub-
sequent experimental blocks. For participants starting
the experiment with the gambling task, the long training
block for the learning task was used for initial yoking. In
practice blocks with the gambling task, the feedback se-
quence was random and not yoked to a learning block.

After the experiment, participants completed a number
of questionnaire items to collect data on subjective informa-
tion and use of feedback in the two tasks using a computer-
mouse slider on the visual analog scale. For a detailed
description of the items, refer to Table 1. Each aspect was
rated separately for the learning and gambling tasks on a
continuous scale ranging between 0 and 100. For Items
1–5, the scale ranged between “not at all” and “a lot.” For
Items 6 and 7, the scale ranged between “very unhappy”
and “very happy.” Both the catch trials and the subjective
ratings were implemented to quantify that the feedback
between learning and gambling tasks was equally attended.

Behavioral Data Analysis

Choice behavior was analyzed in two steps. First, we con-
sidered the proportion of correct actions in the learning
task. Correct actions were defined as those actions that
were associated with a higher reward probability. The
total proportion of correct actions was tested against
chance level using a two-tailed paired-sample t test.
Furthermore, the proportion of correct actions calculated
separately for each of the 16 subblocks was submitted to
a one-way repeated-measure ANOVA with the variable
subblocks. For both significance tests, the proportion
of correct action was arcsine square root transformed
(Winer, Brown, & Michels, 1991). Second, we analyzed
the proportion of stay behavior, which was defined as
the probability of repeating the same action as on the
previous encounter with the same stimulus pair. The goal
of this analysis was to investigate whether we find the
commonly observed win–stay lose–shift (WSLS) behavior
as an indicator of behavioral adaptation and whether this
pattern was more pronounced in the learning task than in
the gambling task. We therefore applied a logistic regres-
sion with choice type as criterion and previous outcome,
task, and their interaction as predictors. Choice type could
either be a stay or a switch (coded as 1 and 0), previous
outcome could either be a win or a loss (coded as 1 and
−1), and task could either be learning or gambling (coded
as 1 and −1). All within-participant variables (intercept,
previous outcome, task, interaction) were implemented
as random effects and therefore were allowed to vary
across participants (e.g., Gillan, Otto, Phelps, & Daw,
2015; Daw, Gershman, Seymour, Dayan, & Dolan, 2011).
Performance on catch trials was analyzed by calculating
the proportion of catch trials on which the feedback of
the previous trial was correctly indicated. This accuracy
was compared between the learning-task blocks and the
gambling-task blocks using a paired-sample t test. Finally,
mean ratings for each item of the final questionnaire

Wurm et al. 37

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/34/1/34/2007804/jocn_a_01777.pdf by G
hent U

niversity user on 07 April 2023



were compared between learning and gambling tasks
using paired-sample t tests.

Electrophysiological Recordings and Analyses

Participants were seated comfortably in a dimly lit, sound-
attenuated, and electrically shielded cabin. The EEG was
recorded using a BioSemi Active-Two system (BioSemi)
with 64 Ag–AgCl electrodes from channels Fp1, AF7,
AF3, F1, F3, F5, F7, FT7, FC5, FC3, FC1, C1, C3, C5, T7,
TP7, CP5, CP3, CP1, P1, P3, P5, P7, P9, PO7, PO3, O1, Iz,
Oz, POz, Pz, CPz, Fpz, Fp2, AF8, AF4, AFz, Fz, F2, F4, F6,
F8, FT8, FC6, FC4, FC2, FCz, Cz, C2, C4, C6, T8, TP8, CP6,
CP4, CP2, P2, P4, P6, P8, P10, PO8, PO4, and O2, as well
as the left and right mastoid. The horizontal and vertical
EOG was monitored by means of four electrodes, placed
above and below the right eye and the outer canthi of
both eyes. Sampling rate was 512 Hz.

As with the behavioral data, EEG data were analyzed
us ing custom-made rout ines in MATLAB (The
MathWorks). For the preprocessing, we used EEGLAB
13.5.4b (Delorme & Makeig, 2004), an open-source tool-
box for EEG data analysis (EEGLAB toolbox for single-trial
EEG data analysis, Swartz Center for Computational
Neurosciences; www.sccn.ucsd.edu/eeglab). EEG data
were offline rereferenced to averaged mastoids, band-
pass filtered to exclude frequencies below 0.1 Hz and
above 35 Hz and divided into epochs from 1000 msec be-
fore to 1500 msec after feedback onset. Baseline activity
from 200 msec before feedback onset was removed. Bad
channels were interpolated using spherical spline

interpolation if they met the joint probability criterion
(threshold = 5) as well as the kurtosis criterion (thresh-
old = 5) in EEGLAB’s channel rejection routine. Epochs
were excluded whenever neural activity in a channel devi-
ated more than ±300 μV from the epoch mean. This crite-
rion was not applied to those channels that are typically
contaminated by blinks (Fp1, Fpz, Fp2, AF7, and AF8) as
this activity was corrected later. In a next step, an
infomax-based independent component analysis (Bell &
Sejnowski, 1995) was conducted. After visual inspection
of the derived independent components, those repre-
senting eye blinks and muscular artifacts were identified
and removed from the data. The remaining epochs were
averaged separately for each participant and task. On av-
erage, this resulted in the following numbers of artifact-
free trials in the respective feedback/task conditions:
170.7 (SD = 17.0) for win/learning, 127.1 (SD = 13.3)
for loss/ learning, 170.0 (SD = 17.3) for win/gambling,
and 126.3 (SD = 14.7) for loss/gambling.
FRN amplitudes were quantified using the mean ampli-

tude in a time window of 200–400 msec after feedback
presentation at electrode FCz (Sambrook & Goslin, 2014).
The P3 amplitude was measured using a peak amplitude
approach (Ernst & Steinhauser, 2018; Sailer, Fischmeister,
& Bauer, 2010; Pontifex, Hillman, & Polich, 2009) because
P3 peaks are often shifted across conditions, making a
quantification in a fixed time interval difficult. We first iden-
tified the maximum amplitude at electrode Pz in a time win-
dow of 200–700 msec and analyzed the peak amplitude
as well as the latency of the peak. For statistical analysis,
we applied repeated-measure ANOVAs involving the

Table 1. Subjective Ratings

Item Question

Task

t Value

Learning Gambling

M (SD) M (SD)

Interest in task How interesting did you find the rounds? 62 (16) 41 (27) 3.65**

Attention to feedback How much attention did you pay to the
outcome in the rounds?

79 (14) 34 (26) 7.22***

Contribution to win How much did you credit yourself for
a win in the rounds?

70 (18) 58 (28) 2.49*

Blame for loss How much did you blame yourself for
a loss in the rounds?

59 (24) 20 (22) 6.18***

Usefulness How useful was the outcome to guide
your next action?

68 (18) 26 (29) 5.90***

Feeling after win How did you feel when you won? 79 (14) 71 (23) 1.80

Feeling after loss How did you feel when you lost? 26 (13) 39 (12) −5.69***

M and SD represent the mean and standard deviation, respectively. Asterisks indicate the significance level.

* p < .5.

** p < .01.

*** p < .001.
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variablesOutcome(win, loss) andTask (learning, gambling)
for amplitudes in both the FRN and P3 time window.

Computational Modeling

We used computational modeling for two reasons. First,
we sought to investigate the mechanisms at play during
feedback processing in general. By constructing different
instantiations of computational reinforcement learning
models, we aimed to identify the mechanisms that are
most likely implemented on a group level. Second, we
sought to leverage this mechanistic explanation of the
behavioral data for a subsequent model-based analysis of
the EEG data. By deriving single-trial estimates of PEs
and using their constituent parts (valence and surprise)
as predictors for the neural data, we aimed to reveal the
specific patterns of TD learning, especially regarding its
modulation via the learnability of the environment.
The fundamental rationale, which is shared between all

computational models detailed below, is that learning oc-
curs in two successive steps: the calculation of a (reward)
PE and the updating of action values based on this specific
PE signal. We therefore implemented a learning policy that
can be characterized as a TD learning architecture (Sutton
& Barto, 2018; Gläscher & O’Doherty, 2010). The calcula-
tion of the PE follows the general approach with the
equation

PE tð Þ ¼ r tð Þ−Q a; s; tð Þ½ � (1)

where r(t) denotes the outcome received in that trial and
Q(a, s, t) denotes the expected value of the chosen action
in the specific stimulus pair. Please note that this calcula-
tion of the PE is most accurately called Rescorla–Wagner
learning rule, as it does not include a term for the expected
value of future states, which determines how agents navi-
gate in more complex environments. On the basis of the
PE, the expected value of the chosen action is incremen-
tally updated according to the equation

Q a; s; t þ 1ð Þ ¼ Q a; s; tð Þ þ α� PE tð Þ (2)

where α is the learning rate, which controls for the speed
of updating. The probability of selecting action a in a spe-
cific stimulus pair s is then simply determined by inserting
the updated action values in a soft-max decision rule

P at ¼ ajsð Þ ¼ exp β�Q a; s; tð Þ þ p� rep a; sð Þð Þ
P

a0 exp β�Q a0; s; tð Þ þ p�rep a0; sð Þð Þ (3)

where the inverse temperature β guides the stochasticity
of the choices and the perseveration parameter p captures
choice perseveration ( p > 0) or switching ( p < 0; Lau &
Glimcher, 2005). The indicator function rep(a) takes a
value of 1 if action a was chosen on the last trial of the
same stimulus pair and 0 otherwise.
We hypothesized that the instruction on the nature of

the task (learning vs. gambling) causes behavioral differ-
ences between these tasks by affecting parameter settings.
In this study, we identified three possiblemechanisms that

could lead to differences between learning and gambling
behavior. Each putative mechanism is linked to one spe-
cific model parameter. For models with a variable learning
rate, the learning rate α is estimated separately for each
task condition. This allows the updating of action values
(Equation 2) to be modulated between the two tasks. As
this parameter controls for the integration of new experi-
ence over trials, we expect to find higher learning rates for
the learning task compared to the gambling task. For
models with variable inverse temperature, the inverse
temperature β is estimated separately for each task condi-
tion. This allows action selection (Equation 3) to be mod-
ulated between the tasks. As this parameter controls for
the stochasticity of choice behavior (with higher values in-
creasing experience-based action selection), we expect to
find higher inverse temperatures for the learning task
compared to the gambling task. For models with variable
policy mixture, we took into consideration previous find-
ings showing that behavioral and neural data can be best
explained by a mixture of different choice policies (e.g.,
Daw et al., 2011; Keramati, Dezfouli, & Piray, 2011).
Core mechanism of this mixture model is the eponymous
mixture of action values for two separate and independent
choice policies. Here, these policies are TD learning, as de-
scribed earlier, and random choice or guessing behavior.
Formally, the mixture of policies was realized by calculat-
ing a net action valueQNET as the weighted combination of
the independent action values according to the equation

QNET a; s; tð Þ ¼ ωQLEARN a; s; tð Þ
þ 1− ωð ÞQGUESS a; s; tð Þ (4)

where QLEARN(a, s, t) denotes action values derived from a
TD mechanism (Equations 1 and 2) and QGUESS(a, s, t)
denotes action values derived from a guessingmechanism.
To allow random action selection, QGUESS(a, s, t) is initial-
ized as 0 and kept constant during the experiment. For ac-
tion selection, QNET values are submitted to Equation 3.
The RL-basedness parameter ω describes the contribution
of the learning policy, thus guiding the trade-off between
the contribution of guessing and learning policy to overt
behavior. If the RL-basedness parameter approaches 1,
the learning policy is predominant and drives action selec-
tion. If the RL-basedness parameter approaches 0, the
guessing policy is predominant and drives action selection.
Formodels with thismechanism, this RL-basedness param-
eter ω was estimated separately for each task condition. In
the gambling task, feedback cannot be predicted, which
might make a mere stochastic action selection viable
(Wurm, Ernst, & Steinhauser, 2020) and sometimes even
advantageous to learning policies (Tervo et al., 2014). We
therefore expect to find higher RL-basedness for the
learning task compared to the gambling task.

Given the task design and instruction, feedback on a
trial cannot only be used to update the value of the chosen
action. In addition, the forgone action on each trial can be
updated using the reversed PE. In contrast to the partial
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updating mechanism, as detailed in Equation 2, this full
updating mechanism should speed up learning. In line
with the literature (Burnside, Fischer, & Ullsperger,
2019; Palminteri, Lefebvre, Kilford, & Blakemore, 2017),
it is plausible to assume that the participants exploited
this feature of the task. Therefore, we incorporated each
of the three architectures for both the partial and full
updating mechanisms, resulting in six candidate models.

All models were implemented in MATLAB v8.6 and the
mfit toolbox (Gershman, 2016) was used for parameter fit-
ting. Parameters were fitted to the simulated or observed
data using nonuniform priors and specific bounds
(Gershman, 2016). The learning rate was bound in [0;
1], and the respective prior was α ∼ beta(1.2, 1.2). The in-
verse temperature was bound in [0; 20], and the prior was
β∼ gamma(2, 1). The perseveration parameter was bound
in [−5; 5], and the prior was p ∼ gauss(0, 1). Finally, RL-
basedness was bound in [0; 1], and the prior wasw ∼ beta
(1.2, 1.2).

To show that the above-described models lead to dis-
tinct and identifiable behavioral patterns, we conducted a
model recovery analysis. We simulated each of the six
candidate models for 200 participants. Consistent with
the empirical task, each simulated participant worked
through 10 blocks with 64 trials each; task identity alter-
nated across blocks, and feedback for the gambling
blocks was yoked. The parameters for each model and
participant were drawn from the same priors that are
used for model fitting (see above). To ensure behavioral
modulation in line with our predictions for the empirical
data, the variable parameters for each model (learning
rate, inverse temperature, or RL-basedness) were sam-
pled independently for each task condition. For the var-
iable learning rate models, learning rates for the learning
task were uniformly drawn from the interval [0.5; 1],
whereas learning rates for the gambling task were drawn
from the interval [0; 0.5]. For the variable inverse temper-
ature models, inverse temperatures for the learning task
were drawn from the interval [1; 5], whereas inverse
temperatures for the gambling task were drawn from
the interval [0; 1]. For the variable policy mixture models,
RL-basedness for the learning task was drawn from the
interval [0.5; 1], whereas RL-basedness for the gambling
task was drawn from the interval [0; 0.5]. This simulation
procedure ensures that the models generate meaningful
behavioral patterns that are generated via quantitative
differences in model parameters. The simulated data
from each model were then subjected to model compar-
ison in the same way as for the empirical data (see below)
to verify that the model that best fit to the data is also the
model that generated the data.

In a next step, we performed model selection based on
the empirical data. We fitted each of the previously
detailed models to the observed behavioral data from
the participants. Three measures are reported for model
selection: the Bayesian information criterion (BIC), the
Akaike information criterion (AIC), and the protected

exceedance probability (PXP). In contrast to the two for-
mer metrics, the latter is derived using a Bayesian ap-
proach with PXP quantifying the probability that any
model considered for model comparison is more fre-
quent than all other possible models, given equal preva-
lence in the population (Rigoux, Stephan, Friston, &
Daunizeau, 2014). In contrast to BIC- or AIC-informed
approximation of log evidence, and as implemented as
default in the mfit toolbox, the PXP in our study is de-
rived under the Laplace approximation (e.g., Friston,
Mattout, Trujillo-Barreto, Ashburner, & Penny, 2007).
Moreover, a Bayesian approach for model selection
allows us to derive posterior probabilities for each partic-
ipant, which quantify the posterior belief that a specific
model generated the data for that participant. As the
model recovery analysis revealed that the PXP metric
leads to a better recoverability than AIC and BIC, we re-
lied our model selection procedure on this metric but
also report BIC and AIC for comparison.2

Subsequently, we compared parameter estimates from
the empirical data between the learning task and the gam-
bling task using two-tailed paired-sample tests. Because
learning rate and RL-basedness are interpreted as a ratio,
their values were arcsine square root transformed (Winer
et al., 1991).
For the model-based single-trial analysis, we constructed

a general linear model to predict single-trial EEG activity at
each electrode and time point, separately for each partici-
pant. Regressors included the task condition as well as
the information about valence and surprise. Task could
either be learning or gambling (coded as 1 and −1).
Valence was defined as the sign of the PE (+1 vs. −1),
and surprise was defined as the absolute value of the PE.
PEs for each candidate model and participant were simu-
lated by feeding the estimated model parameters back
into the same model that was initially used to calculate
the model parameters. On the basis of the idea of random
effects (different models may explain the data from differ-
ent participants), we utilized the Bayesian model selection
approach and weighted PEs from all models according to
their participant-specific posterior belief to obtain a
weighted average PE. This weighted average PE was used
to derive the valence and surprise regressors. Before regres-
sion, the feedback-locked EEG data were downsampled to
125 Hz. All regressors were z-scored. For the surprise re-
gressor, individual values were z-scored separately for the
learning task and the gambling task. Moreover, we included
all possible interactions between regressors. The resulting
linear equation took the following form for each task:

EEG∼ b0þ b1� Taskþ b2� Valenceþ b3
� Surpriseþ b4� TaskValenceþ b5
� TaskSurpriseþ b6� ValenceSurprise
þ b7� TaskValenceSurpriseþ error; (5)

where composite terms (e.g., TaskValence) denote the in-
teraction between the respective regressors. To ensure
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comparability within task conditions and between partici-
pants and to penalize multicollinearity of predictors, the re-
sulting beta values were standardized by their respective
standard deviation (Fischer & Ullsperger, 2013). Only after
this normalization procedure, the individual beta weights
were tested against zero via two-tailed cluster-based permu-
tation tests implemented in the Mass Univariate ERP
Toolbox (Groppe, Urbach, & Kutas, 2011) conducted
across sampling points and electrodes. Corrections for a
family-wise alpha level of .05 were applied, and clusters
were identified for all sampling points at which the uncor-
rected p value fell below .05. We used 105 permutations to
obtain sufficient test distributions. All sampling points be-
tween 0 and 1000 msec after feedback presentation and
all electrodes were considered for permutation testing. To
investigate how reinforcement learning is modulated be-
tween the learning and gambling tasks, we applied the iden-
tical analysis to the difference between beta values from
both tasks, separately for reward prediction errors and ac-
tion values.

RESULTS

Behavioral Data

In a first analysis, we investigated whether participants
show learning in the learning task by considering the
mean percentage of correct actions. An action was de-
fined as correct if the reward probability associated with
this action exceeded 50%. Accordingly, a correct decision
was not defined by actual positive feedback but by the
underlying reward probability. Because of the nonlearn-
able structure of the gambling task, correct actions can
be determined only for the learning task. Overall, partic-
ipants’ performance in this task (M = 62.1%, SEM =
1.3%) significantly exceeded chance level, t(29) = 9.22,
p < .001, d = 1.68. Comparing performance across sub-
blocks, we found a significant main effect of subblock,
F(15, 29) = 4.47, p < .001, ηp = .13. Figure 2A suggests
that no performance improvement occurs beyond the
second trial. This reflects that reward probabilities are
not only variable but even include reversals of the correct
actions, which prevents a monotonically increasing
performance. Nevertheless, these results indicate that

participants were able to use feedback for improving per-
formance in the learning task.

Whereas the preceding analysis shows that participants
can utilize coherent action–feedback mappings in the
learning task to improve performance, we were now
interested whether participants adapted behavior based
on feedback by considering switch/stay behavior across
consecutive encounters with the same stimulus pair. A
common finding is that participants stay with their choices
after wins but switch choices after losses (e.g., Daw et al.,
2011; Cohen & Ranganath, 2007). This pattern of WSLS
behavior is also possible in the gambling task, although
it cannot lead to performance improvement because of
the nonlearnable structure of this task. We hypothesized
to find more evidence for WSLS behavior in the learning
task provided that the learnability influences the strength
of behavioral adaptation. As illustrated in Figure 2B, the
probability of stay behavior was indeed higher after wins
than after losses in both tasks, but this effect was larger
for the learning task. Logistic regression analysis showed
a significant main effect for previous reward, β = 0.39,
p < .001, and task, β = 0.32, p < .001, as well as a signif-
icant interaction between both, β = 0.27, p < .001.
Separate analyses for each task revealed that previous
reward affected stay behavior for both the learning task,
β = 0.67, p < .001, and the gambling task, β = 0.11,
p= .002. These results demonstrate that the learnability
of a task influences the strength of behavioral adapta-
tion based on feedback.

In a last step, we analyzed catch trial performance and
subjective ratings. Analyzing accuracy for catch trials, we
found that although mean values were high for both the
learning task (M= 94.0%, SEM = 1.0%) and the gambling
task (M = 86.6%, SEM = 1.6%), performance was signif-
icantly higher in the learning task, t(29) = 5.89, p < .001,
d = 1.08, indicating decreased attentional resource allo-
cation in the gambling context. Such an interpretation
receives further support when analyzing the subjective
ratings obtained after the experiment (Table 2). Here,
participants explicitly reported a significantly stronger
allocation of attention toward feedback in the learning
task compared to the gambling task. In addition, the
learning task was associated with stronger interest in

Figure 2. (A) Course of the
proportion of correct actions
within blocks of the learning
task. Shaded areas depict the
within-participant standard
error of the mean. (B)
Proportion of stay responses
in the learning and gambling
tasks. Error bars depict the
within-participant standard
error of the mean.
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the task, higher perceived contribution to win, and more
blame after losses. Crucially, outcome in the learning task
was perceived to be significantly more useful compared
to the gambling task. Taken together, the results from
both catch trial performance and subjective ratings pro-
vide support for the effectiveness of our manipulation of
learnability.

ERPs

After finding differences in behavioral adaptation
between tasks, we were interested to elucidate the un-
derlying neural mechanisms by analyzing feedback-
locked ERPs. If reinforcement learning is influenced by
learnability, we hypothesized to find either a reduced
ΔFRN or a reduced P3, or both, for the gambling task rel-
ative to the learning task.

Analyzing amplitudes in the time window of the FRN at
electrode site FCz (Figure 3A), we found a significant
main effect of both Outcome, F(1, 29) = 66.15, p <
.001, ηp = .70, and Task, F(1, 29) = 15.72, p < .001,
ηp = .35. The FRN was increased (i.e., more negative)
for loss (M = 2.22 μV, SEM = 0.80) relative to win feed-
back (M = 6.47 μV, SEM = 0.72) and was increased in the
gambling task (M = 3.25 μV, SEM = 0.76) relative to the
learning task (M = 5.44 μV, SEM = 0.83). However, we
did not find a significant interaction between Task and
Outcome, F(1, 29) = 0.70, p = .410, ηp = .02. That is,
the ΔFRN represented by the difference between win
and loss (Figure 3B and C) was comparable in the learn-
ing and gambling tasks.
Figure 4 shows the results for the analysis for the P3. In

contrast to the previous analysis, the size of the P3 was
quantified as the amplitude of the peak in the time range

Table 2. Model Comparison

Mechanism Updating # −LL AIC BIC PXP

1 α Partial 4 −404.4 (49.6) 816.8 (99.1) 834.7 (99.1) 0.12

2 β Partial 4 −405.6 (49.8) 819.2 (99.4) 837.1 (99.4) 0.12

3 ω Partial 5 −404.68 (49.6) 819.4 (99.1) 841.7 (99.1) 0.12

4 α Full 4 −401.6 (51.7) 811.2 (103.4) 829.0 (103.4) 0.15

5 β Full 4 −403.5 (51.6) 815.0 (103.2) 832.9 (103.2) 0.13

6 ω Full 5 401.8 (51.7) 813.6 (103.4) 835.9 (103.4) 0.36

The mechanism indicates which parameter was allowed to vary between tasks. α is the learning rate parameter, β is the inverse temperature, and
ω the RL-basedness. Updating indicates which algorithm is implemented for value updating. Partial refers to the algorithm that only updates values
for the chosen action on that trial. Full refers to the algorithm that also updates the forgone action. # is the number of free parameters within a
model, −LL is the negative log likelihood, BIC is the Bayesian information criterion, AIC is the Akaike information criterion, and PXP is the protected
exceedance probability. Values represent the mean, and those in brackets indicate the standard error of the mean.

Figure 3. (A) Feedback-locked grand-averaged waveforms at electrode FCz. The gray area indicates the time window for the mean amplitude
analysis. (B) ΔFRN, calculated as the difference waveform between win and loss feedback for each task. (C) Topographies of the difference wave
between loss and win feedback for each task 200–400 msec after feedback onset.
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of 200–700 msec at electrode Pz, determined individually
for each task and participant.3 This method also allows
for analyzing possible latency shifts across tasks, which
appear to be evident in Figure 4A. For the analysis of
peak amplitudes, we found a marginally significant main
effect of Outcome, F(1, 29) = 4.16, p = .051, ηp = .13,
and a significant main effect of Task, F(1, 29) = 27.09, p<
.001, ηp = .48, but these effects were qualified by a sig-
nificant interaction between both variables, F(1, 29) =
6.34, p = .018, ηp = .18. Win feedback showed a larger
P3 than loss feedback in the gambling task, t(29) = 3.06,
p = .005, but no such difference was obtained in the
learning task, t(29) = 0.21, p = .837. Notably, however,
the P3 was larger in the learning task than the gambling
task for both win feedback, t(29) = 3.19, p = .003, and
loss feedback, t(29) = 5.62, p < .001. Although Figure 4A
suggests that the P3 peaks for loss feedback occurred
slightly later than the peaks for win feedback, no signifi-
cant effects were obtained for the analysis of peak laten-
cies (all ps > .16).
Taken together, these results show that learnability in-

fluences feedback processing on the neural level.
However, this effect differed according to the stage of
feedback processing. Although the amplitude was gener-
ally more negative for the gambling task in the time win-
dow of the FRN, the ΔFRN (i.e., the increased negativity
for losses relative to wins), which has been associated with
reinforcement learning and reward prediction error calcu-
lation, was not modulated by learnability. In contrast, the
P3 was generally larger for the learning task but showed an
effect of feedback valence only for the gambling task.
After showing the impact of learnability on feedback

processing, we also included Subsequent Choice as a var-
iable for the ANOVA in an exploratory analysis to investi-
gate the relationship between feedback-related brain
activity and subsequent behavior. Subsequent choice

codes for whether the upcoming choice for the same
stimulus pair is the same (stay) or different (switch) to
the current trial, thus linking neural feedback processing
with WSLS behavior. To analyze a sufficient number of
trials (>10), we had to exclude three participants from
this additional step. For the time window of the FRN,
we found similar effects of Outcome and Task as previ-
ously reported. In addition, the interaction between
Subsequent Choice and Task condition was significant,
F(1, 26) = 9.23, p= .005, ηp = .26. Subsequent switching
behavior was associated with stronger positive deflec-
tions compared to stay behavior only in the learning
task, t(26) = 2.68, p = .013, but not in the gambling task,
t(26) = 0.37, p = .716. Whereas amplitudes in the time
window of the FRN revealed only a marginally significant
interaction between all three involved factors, F(1, 26) =
3.00, p = .095, ηp = .10, amplitudes in the P3 time
window clearly indicate the same interactive effect, F(1,
26) = 7.75, p = .001, ηp = .23. Only for the learning
task, there was a significant interaction between
Subsequent Choice and Outcome, F(1, 26) = 9.56, p =
.005, ηp = .27. Only for wins, subsequent switching (M =
17.46 μV, SEM = 0.67) indicates higher P3 amplitudes
compared to stay behavior (M = 14.56 μV, SEM =
0.50), t(26) = 4.10, p < .001. For losses, subsequent
switching (M = 15.12 μV, SEM = 0.55) was not different
from stay behavior (M = 14.90 μV, SEM = 0.68), t(26) =
0.34, p = .735. There was no comparable effect for the
gambling task, F(1, 26) = 0.12, p = .732, ηp = .00, indi-
cating that there is no link between subsequent choice
and P3 amplitude for the gambling task. In conclusion,
the results from this exploratory analysis reveal that sub-
sequent choice can be predicted from neural activity after
feedback processing. More specifically, following the idea
of WSLS, it seems that P3 reflects the overcoming of such
behavioral tendencies in the learning task (Daw et al.,

Figure 4. (A) Feedback-locked
grand-averaged waveforms at
electrode Pz. The gray area
indicates the time window for
the maximum peak amplitude
analysis. (B) Topographies of
the peak differences between
loss and win feedback for each
task. (C) Topographies of the
peak differences between the
learning and gambling tasks
for each feedback. Peak
(difference) topographies are
compiled by plotting the
amplitudes of all electrodes
at the latency of the peak
amplitudes of electrode Pz,
separately for each condition.
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2006), thus suggesting a link between activity in the P3
window and behavioral adaptation that goes beyond a
simple TD account of behavior.

Model-based Analysis

After finding evidence for an influence of learnability on
choice behavior and the neural correlates of feedback
processing, we applied model-based analysis to reveal
the functional mechanisms underlying these effects. In
comparison to the previously reported analyses, compu-
tational modeling allows us to investigate the mechanistic
underpinnings of decision-making and learning by estab-
lishing a formally explicit link between model variables
and behavioral and neural activity. On the basis of the as-
sumption that this link resembles evidence for TD, we
hypothesized to find modulations of learnability, leading
to separable patterns in the two tasks.

To validate the identifiability of the proposed mecha-
nisms, we first conducted a model recovery procedure
during which we simulated behavioral data from 100 par-
ticipants for each of the six candidate models. At their
core, these models share the rationale for learning but
use different variable parameters to explain differences
between the learning and gambling tasks. Variable learn-
ing rate models assume that instructions on learning and
gambling tasks lead to distinct learning rates, variable in-
verse temperature models assume that the instruction
drives distinct inverse temperature, and variable policy
mixture models assume that behavior can be captured
as a mixture of a pure learning and a pure guessing
policy. Simulated data from these models were then
subjected to model selection. Bayesian model compari-
son via PXP revealed that our models were highly recov-
erable from the simulated data, as shown in Figure 5.
Interestingly, the BIC and AIC metrics were unable to

recover the models that generated the simulated data,
which appears to reflect a bias toward simple models
because of the strong weighting of model complexity in
these measures. Taken together, these results suggest
that model recovery can be subject to considerable biases
arising from the specific comparison metrics. Given these
findings, we conclude that, for the present task and
models, PXP seems to be the most reliable metric for
model comparison.
Afterward, we fitted the six candidate models to the

empirical data. Table 2 shows BIC, AIC, and PXP for each
model. Although the variable policy mixture model with
the full updating mechanism has the highest PXP (37%),
the overall pattern (see Table 2) indicates that models are
similarly prevalent in the population. In line with our
model recovery findings, our interpretation based on
PXP strongly deviates from the BIC and AIC metrics,
which clearly identify the variable learning rate model
with full updating as the best model. Although this
finding from BIC and AIC seems to have a straightforward
interpretation, the previous model recovery procedure
already pointed toward a considerable shortcoming of
those metrics, namely, the confusion between models
involved and the preference for simple compared to
complex model. Although BIC and AIC are still widely
used in the literature, their application is increasingly
criticized, especially with the emergence of alternative
metrics that remedy some common shortcomings (e.g.,
Rigoux et al., 2014; Stephan, Penny, Daunizeau, Moran,
& Friston, 2009).
One of those common shortcomings is that BIC and

AIC must be interpreted as fixed-effects metrics; that is,
only one model accounts for all the data simultaneously.
On the other hand, Bayesian model selection, as em-
ployed in this study, derives random effects metrics that
imply that different models can account for data from

Figure 5. Results of the model recovery procedure. Confusion matrices, separately for the AIC, BIC, and PXP metrics. Values within each row of the
confusion matrix sum to 1. For each model, 200 data sets (participants) were simulated. For AIC and BIC, values within each cell indicate the
proportion of the simulated data sets recovered as the winning model. For PXP, values indicate the probability that the respective model is more
frequent than all other possible models, given equal prevalence in the population. Optimal recovery would yield the identity matrix. Variable learning
rate models = 1, 4; variable inverse temperature model = 2, 5; mixture policy model = 3, 6; partial updating = 1–3; and full updating = 4–6.
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different participants. In line with this assumption and on
the basis of the PXP, we extracted for each participant the
posterior belief that a specific model generated its data.
As shown in Figure 6, the dominating model varied con-
siderably between participants. In line with the finding
that PXP did not identify a winning model on the group

level, this further supports the existence of strong inter-
individual differences in learning strategies.

In a next step, we compared the estimated values of
the different parameters between the learning and gam-
bling tasks (Table 3). We found that the variable param-
eters for all models are significantly different in the

Figure 6. Posterior
probabilities for the empirical
data, sorted according to
the highest probability per
model. Variable learning rate
models = 1, 4; variable inverse
temperature model = 2, 5;
mixture policy model = 3, 6;
partial updating = 1–3; and
full updating = 4–6.

Table 3. Mean Estimated Model Parameters

Parameter

Full Updating Partial Updating

α β ω α β ω

αLEARN 0.42 (±0.28)***
0.29 (±0.24) 0.44 (±0.27)

0.29 (±0.22)***
0.21 (±0.18) 0.32 (±0.23)

αGAMB 0.10 (±0.17) 0.07 (±0.15)

βLEARN

1.29 (±0.89)
1.67 (±1.18)***

1.46 (±0.97) 1.10 (±0.64)
1.39 (±0.87)***

1.28 (±0.72)
βGAMB 0.65 (±0.32) 0.60 (±0.26)

ωLEARN

— —
0.82 (±0.20)***

— —
0.80 (±0.20)***

ωGAMB 0.23 (±0.23) 0.21 (±0.23)

p 0.33 (±0.26) 0.33 (±0.26) 0.34 (±0.27) 0.35 (±0.25) 0.34 (±0.25) 0.35 (±0.25)

Values represent the mean, and those in brackets indicate the standard deviation; boldfaced values were estimated separately for the learning and
gambling tasks and compared using paired t test.

*** p < .001.
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Figure 7. Feedback-locked single-trial regression for the variable mixture policy model with full updating. (A) Normalized regression (beta) values
for the valence predictor at electrode site FCz. Gray bars below indicate the time windows that were considered for cluster-based permutation
testing. Black bars indicate time windows with significant positive effects, and white bars indicate significant negative effects. “Learning” and
“gambling” refer to beta values obtained for the post hoc regression analyses separately for each task. (B) Normalized regression values for the
Surprise × Task interaction at electrode site Pz. (C) Normalized regression values for the Surprise × Valence interaction at electrode site Pz. For
the topographies of the respective regression weights, black diamonds indicate significant positive clusters. White diamonds indicate significant
negative clusters.

46 Journal of Cognitive Neuroscience Volume 34, Number 1

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/34/1/34/2007804/jocn_a_01777.pdf by G
hent U

niversity user on 07 April 2023



learning task compared to the gambling task. Crucially,
RL-basedness for the winning mixture model with full up-
dating was higher in learning tasks compared to gambling
tasks, t(29) = 11.88, p < .001, d = 2.73. In line with our
hypothesis, this indicates that the dominant driving force
for behavior in the learning task was action selection un-
der the (reinforcement) learning policy, whereas the
dominant driving force for behavior in the gambling task
was action selection under the guessing policy.
In a final step, we used the estimated PE from our

model to investigate whether valence and surprise pro-
cessing is modulated by learnability. To this end, we sim-
ulated these single-trial values for each model and
participant. To account for interindividual differences,
we calculated the weighted average PE across models
for each participant from the posterior probabilities and
correlated these values with neural activity using multiple
linear regression analyses. We hypothesized to find a
stronger connection between model estimates and neu-
ral data in the learning task than in the gambling task for
those aspects of the PE that are influenced by learnability.
As the model-based regressor for valence perfectly co-

incides with the outcome variable in the ERP analyses, we
expected to find similar modulations in our single-trial
analysis. In line with this hypothesis, we found two signif-
icant clusters that distinguish between wins and losses
(Figure 7). First, there was a positive correlation between
valence and neural activity at frontocentral electrode sites
ranging between 92 and 452 msec ( p < .001). Second,
there was a sustained negative correlation at posterior
(occipital) electrode sites ranging between 60 and
1000 msec ( p = .009). Crucially, these valence-driven
neural patterns were not modulated between tasks
( p > .083), suggesting that learnability does not modu-
late the processing of valence information.
In contrast to valence information, surprise processing

was clearly modulated between the two tasks, as indicated
by a significant interaction between Task and Surprise
at posterior electrode sites in a time window between 244
and 748 msec ( p= .036). On the basis of the visual inspec-
tion of the topographies, we selected the time course at elec-
trode site Pz, where the significant positive correlation in the
learning task ranged between 372 and 908 msec ( p= .001).
For the gambling task, no comparable correlation was evi-
dent (all ps ≥ .592). In line with our hypothesis, this indi-
cates that learnability impacts TD learning on the neural
level, leading to a suppression of surprise processing if
the task is not learnable, as is the case in the gambling task.
Interestingly, we also found a significant interaction be-

tween Valence and Surprise ( p < .008), suggesting that
these two aspects of the PE are interrelated on the neural
level. The effect covered from 212 to 1000 msec but was
most pronounced over central electrode sites at around
300 msec. Whereas the correlation between surprise and
neural activity was evident when valence was positive
( p = .021), no such correlation was evident for negative
valence ( p = .060).

Please note that the qualitative and quantitative pat-
terns of the single-trial regression from the Laplace-
informed posterior probabilities can be replicated for
each individual model as well as the BIC-informed poste-
rior probabilities. In line with suggestions from the liter-
ature (Wilson & Niv, 2015), model-based neural results
are often robust across a wide variety of computational
models and not specifically conditioned on the choices
for computational modeling.

DISCUSSION

TD learning revolves around the concept of a PE, which
carries information about the valence and surprise of a
specific outcome. In this study, we investigated the influ-
ence of learnability on the neural underpinnings of these
constituent aspects of the PE by contrasting a learning
variant and a gambling variant of a simple two-armed ban-
dit task. The learnable structure of the learning task was
realized as a learnable link between actions and subse-
quent feedback, whereas the random structure of the
gambling task was realized as the absence of such a learn-
able link. On the basis of the idea of a goal-directed
agent, we hypothesized that the difference in learnabil-
ity should lead to a corresponding modulation of the be-
havioral and neural patterns of (TD) learning, and we
asked which level of processing could be affected by this
modulation.

Using computational modeling, we successfully ex-
tracted the neural footprints of both valence and surprise
information in our EEG data. On the one hand, informa-
tion about the surprise of an outcome was reflected in a
pronounced central cluster. Because of its spatial and
temporal distribution, this effect cannot be easily as-
signed to a specific component of the human ERPs.
Crucially, however, differences between task conditions
were evident over posterior sites that strongly resemble
the P3. As indexed by the absence of any correlation be-
tween surprise and neural activity in the gambling task,
its expression appeared to be largely suppressed when
feedback processing was random and thus irrelevant for
behavioral adaptation. On the other hand, information
about the valence of an outcome was reflected by an
early frontocentral cluster of activation that is spatially
and temporally very similar to the ΔFRN. In contrast to sur-
prise, the manipulation of learnability had no influence
on valence calculation. The fully random feedback in
the gambling task led to the same valence effect as the
feedback in the learning task, although learning was
strongly reduced in the former. In summary, these find-
ings support the idea that the different aspects of the PE
are differentially modulated by the learnability of the en-
vironment. Whereas early processing of valence in the
time range of the FRN remains intact across the two task
conditions, subsequent processing of surprise could be
suppressed for environments with a random structure,
that is, during the gambling task.
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Interestingly, our results of the single-trial analysis also
contribute to answering the question on how information
about valence and surprise interact on the neural level. In
the cognitive neuroscience literature, there is an ongoing
debate on this issue. Following the earliest account of the
FRN (Holroyd & Coles, 2002), activity in the time window
of the FRN should reflect surprise only for negative out-
comes (negative and signed PE). On the basis of new
evidence, which showed that the neural response to feed-
back was mainly driven by positive feedback, this account
was subsequently altered and updated (Holroyd et al.,
2009; Holroyd, Pakzad-Vaezi, & Krigolson, 2008). Now, a
reward positivity is assumed to be elicited after positive
outcomes (positive and signed PE). Alternatively, others
have suggested that PEs are reflected in the brain irre-
spective of the valence of the outcome (unsigned PE or
surprise; Alexander & Brown, 2011, 2015). Although
evidence from a meta-analysis suggests that the FRN is
sensitive to an unsigned PE (Sambrook & Goslin, 2015),
only few studies actually estimated PEs using computa-
tional modeling (Burnside et al., 2019; Sambrook et al.,
2018; Fischer & Ullsperger, 2013; Walsh & Anderson,
2011). In our study, surprise was reflected in the neural
data more strongly for positive than negative outcomes,
thus adding to the idea of a positive and signed PE signal
in the brain, which however is not reflected in an FRN or
reward positivity, but rather in a more posterior brain
activity.

Regarding our central manipulation of learnability, the
analysis of ERPs revealed a pattern of results that showed
not only commonalities but also differences as compared
to that of the model-based analysis. Although the overall
amplitude in the FRN time window was influenced by
learnability, the ΔFRN (i.e., the increased negativity for
negative feedback as compared to positive feedback)
did not differ between the learning task and the gambling
task, suggesting that the frontocentral cluster reflecting
valence information in the model-based analysis is linked
to the ΔFRN. In contrast to the FRN, P3 amplitudes re-
vealed a modulation by learnability. Surprisingly, the dif-
ference in P3 amplitudes between win and loss outcomes
was evident in the gambling task but was absent for the
learning task. This pattern could reflect that, because of
the yoking of feedback sequences, positive feedback was
unexpectedly more frequent in the gambling task, thus
inducing an additional expectancy effect in the P3 data.

The comparison of results from the ERP and model-
based analyses demonstrates that a direct mapping of
ERP components to distinct (cognitive) processes is insuf-
ficient and premature. The observation that the gambling
task shows a generally reduced P3 (possibly reflecting
reduced learning) but an increased P3 valence effect sug-
gests that more than one process is reflected in this com-
ponent. The same could be inferred from the differential
effect of learnability on overall FRN amplitudes in general
and on the ΔFRN in particular. Additional leverage for
the idea of multiple parallel neural processes reflected in

the distinct ERP components comes from our exploratory
analysis, suggesting that the P3 reflects an overcoming
of behavioral tendencies imposed by TD learning.
Independent support for this idea comes from different
lines of research. For example, a recent study showed that
whereas the link between the FRN and behavioral adapta-
tion was driven by reinforcement learning, the link be-
tween P3 and behavioral adaptation was triggered by
explicit rules that go beyond patterns derived from rein-
forcement learning (Chase, Swainson, Durham, Benham,
& Cools, 2011). On the basis of the idea that action selec-
tion involves switching between exploitative and explor-
ative modes (Daw et al., 2006), the P3 could provide a
neural correlate for a switch toward explorative behavior.
On amethodological level, this study highlights a crucial

advantage of model-based analyses, which enabled us to
extract functionally meaningful activity from the neural
data by combining the strength of multiple methods
(computational modeling, regression, and cluster-based
permutation testing). Computational modeling is particu-
larly beneficial when theoretical variables cannot be con-
trolled sufficiently by experimental design, as is the case
with surprise in volatile environments and learning in
general. Even under such challenging conditions, we were
thus able to derive predictions about neural patterns. In
contrast to the discrete nature of the traditional ERP
approach, the use of a regression approach in our study
allowed us to refrain from splitting surprise into bins
(e.g., median or mean) but analyze it instead as a continu-
ous variable. As the regression method has gained popu-
larity over the last few years, there is now not only a huge
body of literature for further discussion but also compre-
hensive introduction of this matter (Wilson & Niv, 2015;
Mars et al., 2012; Gläscher & O’Doherty, 2010; O’Doherty,
Hampton, & Kim, 2007). Whereas the traditional ERP
approach always relies on ad-hoc defined components that
often consist of a mixture of different activities (e.g., theta
band and delta band in the FRN time window; Bernat,
Nelson, & Baskin-Sommers, 2015; Foti, Weinberg, Bernat,
& Proudfit, 2015; Harper, Malone, & Bernat, 2014) and are
often a subject to debates regarding their quantification
and functional meaning (Krigolson, 2018; Picton et al.,
2000), cluster-based permutation testing is not bound to
strong constraints in both temporal and spatial domains,
making it a valuable tool for both confirmatory and explor-
ative analyses (for a helpful discussion on the advantages
and pitfalls, see Sassenhagen & Draschkow, 2019; Maris &
Oostenveld, 2007). Although each of the methods de-
scribed above makes a specific contribution to the main
question under scrutiny, only their combination allowed
us to gain novel and critical insights into feedback pro-
cessing in the human brain, which would not have been
possible using traditional methods. Hence, their combi-
nation allowed us to foster our understanding of the pu-
tative underpinnings of decision-making and learning.
Our study design and results are complemented by a

recent study contrasting feedback processing under an
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active and observational learning condition (Burnside
et al., 2019). Using model-based single-trial regression
analyses, the authors showed that neural activity in the
time window of the FRN is driven by a PE and is clearly
modulated between task conditions. Neural activity in
the time window of the P3, however, is driven only by
outcome and is not modulated between task conditions.
Although these results are in stark contrast to the new find-
ings reported above, it is noteworthy to take a closer look
at the paradigmused in that previous study and underlying
these effects. In the active condition, participants played a
probabilistic but stationary bandit task, whereas in the
observational condition, they merely watched another
person. Whereas the active condition shares some similar-
ities with our learning condition, outcome information in
the observation condition is orthogonally different to our
gambling condition. On the one hand, observational
learning still necessitates learning from (observed) action,
but without the outcome being relevant for the agent’s
goal achievement. Gambling, on the other hand, does
not necessitate learning, although the outcome is still
relevant for goal achievement. These differences in task
design are mirrored on the neural level and indicate the
impact of top–down processing selectively modulating
TD learning based on environmental demands.
The question emerges whether, rather than the selec-

tive suppression of surprise processing, differences in
visual attention to stimuli and feedback could have pro-
duced the present results. Recent studies highlighted the
importance of attention for reinforcement learning using
a multidimensional bandit task, in which only one of
multiple stimulus dimensions was relevant for feedback
(Leong, Radulescu, Daniel, DeWoskin, & Niv, 2017; Niv
et al., 2015). Critically, however, they found attention to
unselectively constrain reinforcement learning, whereas
only the surprise processing was selectively modulated
in our unidimensional bandit task. This could suggest
that our results do not primarily reflect differences in
attention between learning and gambling tasks. In fact,
our task design, especially the implementation of catch
trials, was chosen to control for attentional differences
between tasks. Although attention to feedback was slightly
weaker in the gambling task, as indicated by both catch
trial accuracy and subjective ratings, the same measures
also showed that attention was clearly allocated to feed-
back even in the gambling task, and ERP data as well as
model-based analysis revealed that the effect of valence
was identical between tasks. The interpretation that
attention plays only a minor role for our results is further
supported by our computational modeling results. In
summary, our findings preclude a simple alternative ex-
planation by mere attentional differences.
The accuracy of model-based analyses strongly relies

on multiple factors such as the model selection proce-
dure and the validity of both the applied computational
model and experimental manipulation (Palminteri, Wyart,
& Koechlin, 2017; Nassar & Frank, 2016; Wilson & Niv,

2015; Rigoux et al., 2014; Nassar & Gold, 2013; Stephan
et al., 2009). Therefore, we first evaluated the identifia-
bility of our computational models using amodel recovery
procedure. This procedure indicated that recoverability
differed considerably across metrics. Consequently, we
relied model comparison on the metric that is most con-
vincing given the model recovery procedure (i.e., the
PXP). Independent of model comparison, parameter
estimates from each model revealed a significant differ-
ence between instructed task types, further validating
our experimental manipulation.

The obtained context-dependent arbitration between
policies/parameters is highly adaptive. In the learnable
environment, behavior was dominated by reinforcement
learning principles and showed clear hallmarks of behav-
ioral adaptation. Otherwise, in the random environment,
behavior was dominated by stochastic choice (although
some behavioral adaptation was still observable).
Irrespective of the true underlying mechanism (decreased
learning rate, increased temperature, or decreased RL-
basedness), stochastic choice is often implemented in
computational models of learning. Its purpose is mostly
to serve as a baseline or dummy condition that is com-
pared to biologically plausible choice policies (e.g., Doll,
Duncan, Simon, Shohamy, & Daw, 2015; Steingroever,
Wetzels, & Wagenmakers, 2014; Worthy & Maddox,
2014; Worthy, Hawthorne, & Otto, 2013). The present
findings however suggest that stochastic choice behavior
can be utilized in a goal-directed way as well. In line with
recent animal findings (Tervo et al., 2014) and on the basis
of the idea of a cost–benefit arbitration (Kool, Gershman,
& Cushman, 2017, 2018), we suggest that stochastic
choice behavior maximizes outcomes, while simulta-
neously minimizing computational costs, for example, by
withholding resources budgeted for the processing of
surprise or the updating of expectations.

The idea that learnability exerts its influence by alter-
ing the trade-off between alternative internal task
representations/parameters is compatible with sugges-
tions in the existing literature. It has already been assumed
that learning tasks are characterized by a reliance on exter-
nal feedback, whereas gambling tasks are characterized by
a reliance on internal expectations (Holroyd et al., 2009;
Hajcak, Moser, Holroyd, & Simons, 2007; Holroyd,
Hajcak, & Larsen, 2006). Similar ideas received attention
also within other domains of reinforcement learning re-
search (Daw & O’Doherty, 2013; Niv, 2009; Dayan & Niv,
2008). A frequent assumption is that reinforcement learn-
ing is achieved by the interplay between a model-free sys-
tem that learns from experience and a model-based
system in which internal task models drive behavior in a
more top–down way. According to one proposal, arbitra-
tion between these different systems for decision-making
is based on the relative uncertainty of their respective
estimates with the less uncertain estimate predominantly
driving behavior (Daw, Niv, & Dayan, 2005). Although
such uncertainty-based arbitration is implemented on a
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trial-to-trial basis (Lee, Shimojo, & O’Doherty, 2014),
related evidence suggests that instructions can influence
the arbitration between learning systems via pFC loops
that modulate reinforcement learning in the striatum
(Doll, Hutchison, & Frank, 2011; Doll, Jacobs, Sanfey, &
Frank, 2009). A similar neural pathway between pFC and
the striatummay account for the putative top–downmod-
ulation of surprise in this study.

Taken together, our results show that task learnability
can modulate reinforcement learning by means of two
mechanisms. On the one hand, this modulation occurs
via the selective suppression of surprise when a task is
unlearnable, leaving the evaluation of valence unaffected.
On the other hand, we suggest that behavioral adaptation
on the basis of task learnability is driven by a flexible
cost–benefit arbitration.
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Notes

1. Please note that there is no clear consensus about the label-
ing of the FRN in the literature. To prevent confusion, we refer
to the ΔFRN as the difference between positive and negative
outcomes. For an insightful discussion on the naming and
quantification of the FRN component, refer to a recent method-
ological review by Krigolson (2018).
2. In contrast to the Laplace-informed Bayesian model selec-
tion, BIC-informed Bayesian model selection exhibits similar
biases in model recovery as the BIC and AIC metric, namely,
favoring simpler models over complex models (in terms of
number of free parameters).
3. Please note that a similar pattern of results was obtained
when we quantified the P3 as mean amplitude in a time window
between 200 and 500 msec at electrode Pz.
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